
تعداد نشریات | 21 |
تعداد شمارهها | 301 |
تعداد مقالات | 3,173 |
تعداد مشاهده مقاله | 3,211,848 |
تعداد دریافت فایل اصل مقاله | 2,380,306 |
Simulating Snow Cover Extent by Combined Principal Component Analysis and Artificial Intelligence Approaches Using Climatic Parameters | ||
Water Harvesting Research | ||
دوره 5، شماره 2 - شماره پیاپی 8، شهریور 2022، صفحه 241-256 اصل مقاله (1.24 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22077/jwhr.2023.6527.1090 | ||
نویسندگان | ||
Amin Amini Rakan1؛ Keivan Khalili* 1؛ Hossein Rezaie1؛ Nasrin Fathollahzadeh Attar2 | ||
1Department of Water Engineering, Urmia University, Urmia, Iran | ||
2Department of Statistics, University of Padua, Padua, Italy | ||
چکیده | ||
Snow cover holds significant importance in hydrology as it plays a vital role in the water cycle and water resource management. Acting as a natural reservoir, snow stores water during winter and gradually releases it as it melts. This process contributes to streamflow, groundwater recharge, and overall water availability. Main goal of this study is the modeling and prediction of the changes in snow cover extent in Baranduz River basin, in Iran. Accurate modeling of snow cover area is crucial in hydrology as it enables precise predictions and assessments of water resources. These models incorporate snow accumulation, melt rates, and distribution, allowing informed decision-making for water management, agriculture, and ecosystem preservation. Therefore, the snow cover extent of the basin was extracted from MODIS 8-day maximum snow extent production from 2000 to 2019. Forty meteorological parameters, 20 satellite based and 20 surface stationary collected data, were used as the independent variables. The PCA was performed to parameters, and the PCA6 vector was used as input to the machine learning models. ANN, SVM, CART, and RF machine learning approaches were performed in this study. The results showed, all machine learning models had satisfactory performance and efficiency in modeling and predicting the snow cover extent. The PCA-RF model showed the highest accuracy. The RMSE and R2 values for the PCA-RF model were 0.345 and 0.895, respectively, in the testing phase. Despite the fact that models have not been able to predict some of the boundary points accurately, they have still demonstrated acceptable performance. | ||
کلیدواژهها | ||
ANN؛ Baranduz River؛ CART؛ PCA؛ RF؛ Snow Cover Extent؛ SVM | ||
مراجع | ||
Abbasi, A., Khalili, K., Behmanesh, J., & Shirzad, A. (2019). Drought Prediction Using GEP-GARCH Hybrid Model (Case Study: Salmas Synoptic Station). Iranian Journal of Soil and Water Research, 50(6), 1317-1329. https://doi.org/10.22059/ijswr.2019.271596.668069 Abghari, H., Ahmadi, H., Besharat, S., & Rezaverdinejad, V. (2012). Prediction of daily pan evaporation using wavelet neural networks. Water Resources Management, 26(12), 3639-3652. Abou Zakhem, B., Al-Charideh, A., & Kattaa, B. (2017). Using principal component analysis in the investigation of groundwater hydrochemistry of Upper Jezireh Basin, Syria. Hydrological Sciences Journal, 62(14), 2266-2279. Ahmed, A. M., Deo, R. C., Feng, Q., Ghahramani, A., Raj, N., Yin, Z., & Yang, L. (2021). Deep learning hybrid model with Boruta-Random forest optimiser algorithm for streamflow forecasting with climate mode indices, rainfall, and periodicity. Journal of Hydrology, 599, 126350. Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716-723. Attar, N. F., Khalili, K., Behmanesh, J., & Khanmohammadi, N. (2018). On the reliability of soft computing methods in the estimation of dew point temperature: The case of arid regions of Iran. Computers and electronics in agriculture, 153, 334-346. Bahrami, A., Goïta, K., & Magagi, R. (2020a). Analysing the contribution of snow water equivalent to the terrestrial water storage over Canada. Hydrological Processes, 34(2), 175-188. Bahrami, M., Khaksar, E., & Khaksar, E. (2020b). Spatial variation assessment of groundwater quality using multivariate statistical analysis (Case Study: Fasa Plain, Iran). Journal of Groundwater Science and Engineering, 8(3), 230-243. Behmanesh, J., & Mehdizadeh, S. (2017). Estimation of soil temperature using gene expression programming and artificial neural networks in a semiarid region. Environmental Earth Sciences, 76(2), 76. Biau, G. (2012). Analysis of a random forests model. The Journal of Machine Learning Research, 13(1), 1063-1095. Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25, 197-227. Boudhar, A., Ouatiki, H., Bouamri, H., Lebrini, Y., Karaoui, I., Hssaisoune, M., Arioua, A., & Benabdelouahab, T. (2020). Hydrological Response to Snow Cover Changes Using Remote Sensing over the Oum Er Rbia Upstream Basin, Morocco. In Mapping and Spatial Analysis of Socio-economic and Environmental Indicators for Sustainable Development (pp. 95-102). Springer. Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211-243. Braspenning, P. J., Thuijsman, F., & Weijters, A. J. M. M. (1995). Artificial neural networks: an introduction to ANN theory and practice (Vol. 931). Springer Science & Business Media. Breiman, L. (1984). Classification and Regression Trees (1st Edition ed.). Routledge. Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. Cohen, J., & Rind, D. (1991). The effect of snow cover on the climate. Journal of climate, 4(7), 689-706. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273-297. Duan, Y., Liu, T., Meng, F., Yuan, Y., Luo, M., Huang, Y., Xing, W., Nzabarinda, V., & De Maeyer, P. (2020). Accurate simulation of ice and snow runoff for the mountainous terrain of the kunlun mountains, China. Remote Sensing, 12(1), 179. Gunn, S. R. (1998). Support vector machines for classification and regression. ISIS technical report, 14(1), 5-16. Gupta, D., Hazarika, B. B., Berlin, M., Sharma, U. M., & Mishra, K. (2021). Artificial intelligence for suspended sediment load prediction: a review. Environmental Earth Sciences, 80(9), 1-39. Hall, D., & Riggs, G. A. (2016). MODIS/Terra Snow Cover 8-Day L3 Global 500m SIN Grid, Version 6. Boulder, Colorado USA. , NASA National Snow and Ice Data Center Distributed Active Archive Center. Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E., & Bayr, K. J. (2002). MODIS snow-cover products. Remote sensing of environment, 83(1-2), 181-194. Hassoun, M. H. (1995). Fundamentals of artificial neural networks. MIT press. Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector machines. IEEE Intelligent Systems and their applications, 13(4), 18-28. Hou, J., Huang, C., Chen, W., & Zhang, Y. (2021). Improving snow estimates through assimilation of MODIS fractional snow cover data using machine learning algorithms and the common land model. Water Resources Research, 57(7), e2020WR029010. Jehn, F. U., Bestian, K., Breuer, L., Kraft, P., & Houska, T. (2020). Using hydrological and climatic catchment clusters to explore drivers of catchment behavior. Hydrology and Earth System Sciences, 24(3), 1081-1100. Karimi, S., Niksokhan, M. H., & Karimi, S. (2016). Modeling snow cover area and predicting its changes in Haraz catchment. Imaging, 2(4), 450-455. Kazama, S., Sakamoto, K., Salem, G. S. A., & Kashiwa, S. (2021). Improving the Accuracy of Snow and Hydrological Models Using Assimilation by Snow Depth. Journal of Hydrologic Engineering, 26(1), 05020043. Khalili, K., & Nazeri Tahroudi, M. (2016). Performance evaluation of ARMA and CARMA models in modeling annual precipitation of Urmia synoptic station. Water and Soil Science, 26(2-1), 13-28. Kim, R. S., Kumar, S., Vuyovich, C., Houser, P., Lundquist, J., Mudryk, L., Durand, M., Barros, A., Kim, E. J., & Forman, B. A. (2021). Snow Ensemble Uncertainty Project (SEUP): Quantification of snow water equivalent uncertainty across North America via ensemble land surface modeling. The Cryosphere, 15(2), 771-791. Kuter, S., Aksu, C., Bolat, K., & Akyurek, Z. (2021). An Alternative Machine Learning-Based Methodology for H-SAF H35 Fractional Snow Cover Product. Lee, E., & Park, S. K. (2021). Optimization of snow density parameter of Noah Land Surface Model using micro-genetic algorithm for estimating snow depth. Li, G., Zhao, Y., Zhang, W., & Xu, X. (2021). Influence of snow cover on temperature field of frozen ground. Cold Regions Science and Technology, 192, 103402. Lin, Y., Cai, T., & Ju, C. (2020). Snow evaporation characteristics related to melting period in a forested continuous permafrost region. Environmental Engineering & Management Journal (EEMJ), 19(3). Liu, C., Huang, X., Li, X., & Liang, T. (2020). MODIS fractional snow cover mapping using machine learning technology in a mountainous area. Remote Sensing, 12(6), 962. Mehdizadeh, S., Behmanesh, J., & Khalili, K. (2017). A comparison of monthly precipitation point estimates at 6 locations in Iran using integration of soft computing methods and GARCH time series model. Journal of Hydrology, 554, 721-742. Milly, P. C., & Dunne, K. A. (2020). Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation. Science, 367(6483), 1252-1255. Nakhaei, M., Mohebbi Tafreshi, A., & Saadi, T. (2023). An evaluation of satellite precipitation downscaling models using machine learning algorithms in Hashtgerd Plain, Iran. Modeling Earth Systems and Environment, 1-15. Niu, W.j., & Feng, Z.-k. (2021). Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management. Sustainable Cities and Society, 64, 102562. Osborne, J. (2010). Improving your data transformations: Applying the Box-Cox transformation. Practical Assessment, Research, and Evaluation, 15(1), 12. Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 2(11), 559-572. Rezaverdinejad, V. (2016). Evaluation and Comparison of GRNN, MLP and RBF Neural Networks for Estimating Cucumber, Tomato and Reference Crops’ Evapotranspiration in Greenhouse Condition. Water and Soil Science, 25(4/2), 123-136. Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The RPROP algorithm. IEEE international conference on neural networks, Riggs, G. A., Hall, D. K., & Román, M. O. (2015). MODIS snow products collection 6 user guide. National Snow & Ice Data Center. Saavedra, F. A., Kampf, S. K., Fassnacht, S. R., & Sibold, J. S. (2018). Changes in Andes snow cover from MODIS data, 2000–2016. The Cryosphere, 12(3), 1027-1046. Sahu, R. K., Müller, J., Park, J., Varadharajan, C., Arora, B., Faybishenko, B., & Agarwal, D. (2020). Impact of Input Feature Selection on Groundwater Level Prediction From a Multi-Layer Perceptron Neural Network. Frontiers in Water, 2, 46. Sakia, R. M. (1992). The Box‐Cox transformation technique: a review. Journal of the Royal Statistical Society: Series D (The Statistician), 41(2), 169-178. Sharma, H., & Kumar, S. (2016). A survey on decision tree algorithms of classification in data mining. International Journal of Science and Research (IJSR), 5(4), 2094-2097. Song, F., Guo, Z., & Mei, D. (2010). Feature selection using principal component analysis. 2010 international conference on system science, engineering design and manufacturing informatization, Steinwart, I., & Christmann, A. (2008). Support vector machines. Springer Science & Business Media. Vapnik, V. (1998). Statistical learning theory Wiley. New York, 1(624), 2. Vapnik, V., & Lerner, A. Y. (1963). Recognition of patterns with help of generalized portraits. Avtomat. i Telemekh, 24(6), 774-780. Wang, W., Zhao, Y., Tu, Y., Dong, R., Ma, Q., & Liu, C. (2023). Research on Parameter Regionalization of Distributed Hydrological Model Based on Machine Learning. Water, 15(3), 518. Westra, S., Brown, C., Lall, U., & Sharma, A. (2007). Modeling multivariable hydrological series: Principal component analysis or independent component analysis? Water Resources Research, 43(6). Wu, Y., Duguay, C. R., & Xu, L. (2021). Assessment of machine learning classifiers for global lake ice cover mapping from MODIS TOA reflectance data. Remote sensing of environment, 253, 112206. Yakut, E., & Süzülmüş, S. (2020). Modelling monthly mean air temperature using artificial neural network, adaptive neuro-fuzzy inference system and support vector regression methods: A case of study for Turkey. Network: Computation in Neural Systems, 31(1-4), 1-36. Yegnanarayana, B. (2009). Artificial neural networks. PHI Learning Pvt. Ltd. Zhang, X., Wang, R., Yao, Z., & Liu, Z. (2020). Variations in glacier volume and snow cover and their impact on lake storage in the Paiku Co Basin, in the Central Himalayas. Hydrological Processes, 34(8), 1920-1933. Zhu, Q., Luo, Y., Zhou, D., Xu, Y.-P., Wang, G., & Tian, Y. (2021). Drought prediction using in situ and remote sensing products with SVM over the Xiang River Basin, China. Natural Hazards, 105(2), 2161-2185. | ||
آمار تعداد مشاهده مقاله: 122 تعداد دریافت فایل اصل مقاله: 122 |