
تعداد نشریات | 21 |
تعداد شمارهها | 301 |
تعداد مقالات | 3,173 |
تعداد مشاهده مقاله | 3,211,879 |
تعداد دریافت فایل اصل مقاله | 2,380,326 |
اثرکودهای زیستی و محلول پاشی نانوسیلیکون بر فرآیند انتقال مجدد ماده خشک و عملکرد دانه گندم در شرایط قطع آبیاری | ||
تنشهای محیطی در علوم زراعی | ||
مقاله 9، دوره 16، شماره 4، دی 1402، صفحه 1005-1028 اصل مقاله (786.3 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/escs.2023.5254.2128 | ||
نویسندگان | ||
فرناز احمدی نورالدین وند* 1؛ رئوف سیدشریفی2؛ سید عطااله سیادت3؛ راضیه خلیل زاده4 | ||
1دانشجوی دکترای فیزیولوژی گیاهان زراعی، گروه مهندسی تولید و ژنتیک گیاهی، دانشگاه محقق اردبیلی | ||
2استاد، گروه مهندسی تولید و ژنتیک گیاهی، دانشگاه محقق اردبیلی | ||
3استاد، گروه مهندسی تولید و ژنتیک گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان | ||
4دکترای فیزیولوژی گیاهان زراعی، گروه مهندسی تولید و ژنتیک گیاهی، دانشگاه ارومیه | ||
چکیده | ||
به منظور بررسی اثر کودهای زیستی و نانوسیلیکون بر فرآیند انتقال مجدد ماده خشک و عملکرد دانه گندم در شرایط قطع آبیاری، آزمایشی به صورت فاکتوریل در قالب طرح پایه بلوکهای کامل تصادفی با سه تکرار در مزرعه پژوهشی دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی در سال زراعی 98-1397 اجرا شد. عوامل آزمایشی شامل سطوح آبیاری (آبیاری کامل بهعنوان سطح شاهد، قطع آبیاری در 50% مرحله سنبلهدهی به عنوان محدودیت ملایم و قطع آبیاری در 50% مرحله چکمه ای شدن بهعنوان محدودیت شدید آبی بر اساس کد 55 و 43 مقیاس BBCH)، محلول پاشی نانوسیلیکون (محلول پاشی با آب به عنوان شاهد، 30 و 60 میلی گرم در لیتر نانوسیلیکون) و کودهای زیستی در چهار سطح (عدم کاربرد به عنوان شاهد، کاربرد قارچ مایکوریزا (Glomus mosseae)، کاربرد توأم فلاوباکتریوم و سودوموناس، کاربرد توأم مایکوریزا با باکتریها) بودند. نتایج نشان داد که کاربرد توأم مایکوریزا با باکتریها در شرایط آبیاری کامل سهم انتقال ماده خشک (27.33%) و سهم ذخایر ساقه (17.77%) در عملکرد دانه را کاهش، ولی میزان فتوسنتز جاری (305.10 گرم در مترمربع) و سهم فتوسنتز جاری در عملکرد دانه (72.66%) را افزایش داد. همچنین بیشترین عملکرد دانه (4593 کیلوگرم در هکتار) و شاخص برداشت (38.4%) از کاربرد توأم کودهای زیستی و 30 میلیگرم در لیتر نانوسیلیکون در شرایط آبیاری کامل به دست آمد. حداکثر شاخص سطح برگ، زیستتوده کل و اجزای عملکرد با کاربرد توأم کودهای زیستی و 60 میلی گرم در لیتر نانوسیلیکون در شرایط آبیاری کامل به دست آمد. بر اساس نتایج این بررسی، به نظر میرسد محلول پاشی 30 میلی گرم در لیتر نانوسیلیکون، کاربرد توأم قارچ مایکوریزا و باکتریهای محرک رشد میتواند به عنوان یک فاکتور مدیریتی مناسب برای افزایش عملکرد دانه گندم در شرایط محدودیت آبی باشد. | ||
کلیدواژهها | ||
توزیع مجدد؛ عملکرد اقتصادی؛ کودهای بیولوژیکی؛ محدودیت آبی؛ نانوتکنولوژی | ||
مراجع | ||
Al-juthery, H.W.A., Al-taee, R.A.H.G., Al-Obaidi, Z.H.H., Ali, E.A.H.M. and NAl-Shami, Q.M., 2019. Influence of foliar application of some nano-fertilizers in growth and yield of potato under drip irrigation. In Journal of Physics. 1294 (9), p. 092024). https://doi 10.1088/1742-6596/1294/9/092024 Arafa, S.A., Attia, K.A., Niedbała, G., Piekutowska, M., Alamery, S., Abdelaal, K., Alateeq, T.K., AM Ali, M., Elkelish, A. and Attallah, S.Y., 2021. Seed Priming Boost Adaptation in Pea Plants under Drought Stress. Plants, 10, p.2201. https://doi.org/10.3390/plants10102201 Azizi, S., Kouchaksaraei, M.T., Hadian, J., Abad, A.R.F.N., Sanavi, S.A.M.M., Ammer, C. and Bader, M.K.F., 2021. Dual inoculations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria boost drought resistance and essential oil yield of common myrtle. Forest Ecology and Management, 497, p.119478. https://doi.org/10.1016/j.foreco.2021.119478 Bahamin, S., Koocheki, A., Nassiri Mahallati, M. and Behashti, S.A., 2021. Effect of nitrogen and phosphorus fertilizers on yield and nutrient efficiency indices in maize under drought stress. Environmental Stresses in Crop Sciences, 14, 675-690. [In Persian]. https://doi.org/10.22077/escs.2020.3095.1793 Banerjee, A., Singh, A., Sudarshan, M. and Roychoudhury, A., 2021. Silicon nanoparticle-pulsing mitigates fluoride stress in rice by fine-tuning the ionomic and metabolomic balance and refining agronomic traits. Chemosphere, 262, p.127826. https://doi.org/10.1016/j.chemosphere.2020.127826 Banisaeidi, A.K. and Motamedi, M., 2020. The effect of the amount nitrogen applied on grain yield and dry matter remobilization of maize (Zea mays L.) in drought stress conditions. Journal of Plant Ecophysiology, 12, 68-77. https://doi.org/10.1007/s11738-011-0901-y Boussakouran, A., Sakar, E.H., El Yamani, M. and Rharrabti, Y., 2019. Morphological traits associated with drought stress tolerance in six Moroccan durum wheat varieties released between 1984 and 2007. Journal of Crop Science and Biotechnology, 22, 345-353. https://doi.org/10.1007/s12892-019-0138-0 Çakmakçı, R., Erat, M., Erdoğan, Ü. and Dönmez, M.F., 2007. The influence of plant growth–promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. Journal of Plant Nutrition and Soil Science, 170, 288-295. https://doi.org/10.1002/jpln.200625105 Dehghan, M., Balouchi, H.R., Yadavi, A.R. and Safikhani, F., 2017. Effect of foliar application of brassinolide on grain yield and yield components of bread wheat (Triticum aestivum L.) cv. Sirvan under terminal drought stress conditions. Iranian Journal of Crop Sciences, 19, 40-56. [In Persian with English Summary]. Desoky, E.S.M., Mansour, E., El-Sobky, E.S.E., Abdul-Hamid, M.I., Taha, T.F., Elakkad, H.A., Arnaout, S.M., Eid, R.S., El-Tarabily, K.A. and Yasin, M.A., 2021. Physio-biochemical and agronomic responses of faba beans to exogenously applied nano-silicon under drought stress conditions. Frontiers in plant science, 12. https://doi.org/10.3389/fpls.2021.637783 El-Sawah, A.M., El-Keblawy, A., Ali, D.F.I., Ibrahim, H.M., El-Sheikh, M.A., Sharma, A., Alhaj Hamoud, Y., Shaghaleh, H., Brestic, M., Skalicky, M. and Xiong, Y.C., 2021. Arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria enhance soil key enzymes, plant growth, seed yield, and qualitative attributes of guar. Agriculture, 11, p.194. https://doi.org/10.3390/agriculture11030194 Ghorbanian, H., Janmohammadi, M., Ebadi-Segherloo, A. and Sabaghnia, N., 2017. Genotypic response of barley to exogenous application of nanoparticles under water stress condition. In Annales Universitatis Mariae Curie-Sklodowska, sectio C–Biologia. 72 (2). https://dio10.17951/c.2017.72.2.15-27 Gong, D., Zhang, X., Yao, J., Dai, G., Yu, G., Zhu, Q., Gao, Q. and Zheng, W., 2021. Synergistic effects of bast fiber seedling film and nano-silicon fertilizer to increase the lodging resistance and yield of rice. Scientific Reports, 11, 1-8. https://doi.org/10.1038/s41598-021-92342-5 Hanaka, A., Ozimek, E., Reszczyńska, E., Jaroszuk-Ściseł, J. and Stolarz, M., 2021. Plant Tolerance to Drought Stress in the Presence of Supporting Bacteria and Fungi: An Efficient Strategy in Horticulture. Horticulturae, 7, p.390. https://doi.org/10.3390/horticulturae7100390 Hasanpour, J. and Zand, B., 2014. Effect of wheat (Triticum aestivum L.) seed inoculation with bio-fertilizers on reduction of drought stress damage. Iranian Journal of Seed Sciences and Research, 1, 1-12. [In Persian with English Summary]. Hataminia, P., Abbasi, N. and Zarea, M.J., 2020. Quantity and quality yield of durum wheat under the impact of growth promoting bacteria in rain-fed and supplementary irrigation conditions. Iranian Dryland Agronomy Journal, 8, 121-139. https://doi.org/10.22092/idaj.2019.120533.200 Hattori, T., Inanaga, S., Araki, H., An, P., Morita, S., Luxová, M. and Lux, A., 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiologia Plantarum, 123, 459-466. https://doi.org/10.1111/j.1399-3054.2005.00481.x Kheirizadeh Arogh, E., Sharifi, R., Sedghi, M. and Barmaki, M., 2015. Effects of biofertilizers and nano zinc oxide on remobilization and some growth indices of triticale under water limitation conditions. CPJ, 7, 37-55. https://doi.org/10.22124/cr.2022.22374.1726 Liu, Y., Zhang, P., Li, M., Chang, L., Cheng, H., Chai, S. and Yang, D., 2020. Dynamic responses of accumulation and remobilization of water soluble carbohydrates in wheat stem to drought stress. Plant Physiology and Biochemistry, 155, 262-270. https://doi.org/10.1016/j.plaphy.2020.07.024 Luo, Y., Tang, Y., Zhang, X., Li, W., Chang, Y., Pang, D., Xu, X., Li, Y. and Wang, Z., 2018. Interactions between cytokinin and nitrogen contribute to grain mass in wheat cultivars by regulating the flag leaf senescence process. The Crop Journal, 6, 538-551. https://doi.org/10.1016/j.cj.2018.05.008 Mabagala, F.S., Geng, Y., Cao, G., Wang, L., Wang, M. and Zhang, M., 2020. Silicon accumulation, partitioning and remobilization in spring maize (Zea mays L.) under silicon supply with straw return in Northeast China. Journal of Plant Nutrition, 44, 1498-1514. https://doi.org/10.1080/01904167.2020.1867576 Madani, A., Rad, A.S., Pazoki, A., Nourmohammadi, G. and Zarghami, R., 2010. Wheat (Triticum aestivum L.) grain filling and dry matter partitioning responses to source: sink modifications under postanthesis water and nitrogen deficiency. Acta Scientiarum. Agronomy, 32, 145-151. https://doi.org/10.4025/actasciagron.v32i1.6273 Maydup, M.L., Antonietta, M., Graciano, C., Guiamet, J.J. and Tambussi, E.A., 2014. The contribution of the awns of bread wheat (Triticum aestivum L.) to grain filling: Responses to water deficit and the effects of awns on ear temperature and hydraulic conductance. Field Crops Research, 167, 102-111. https://doi.org/10.1016/j.fcr.2014.07.012 Mondal, S., Sallam, A., Sehgal, D., Sukumaran, S., Farhad, M., Navaneetha Krishnan, J., Kumar, U. and Biswal, A., 2021. Advances in Breeding for Abiotic Stress Tolerance in Wheat. In Genomic Designing for Abiotic Stress Resistant Cereal Crops, p.71-103. https://doi.org/10.1007/978-3-030-75875-2_2 Moradi, L., Siosemardeh, A., Sohrabi, Y., Bahramnejad, B. and Hosseinpanahi, F., 2022. Dry matter remobilization and associated traits, grain yield stability, N utilization, and grain protein concentration in wheat cultivars under supplemental irrigation. Agricultural Water Management, 263, p.107449. https://doi.org/10.1016/j.agwat.2021.107449 Naili, F., Neifar, M., Elhidri, D., Cherif, H., Bejaoui, B., Aroua, M., Bejaoui, Z., Abassi, M., Mguiz, K., Chouchane, H. and Ouzari, H.I., 2018. Optimization of the effect of PGPR–based biofertlizer on wheat growth and yield. Biom. Biometrics and Biostatistics International Journal. 7 (3), pp. 226-232. https://doi.org/10.15406/bbij.2018.07.00213 Namjoyan, S., Sorooshzadeh, A., Rajabi, A. and Aghaalikhani, M., 2020. Nano-silicon protects sugar beet plants against water deficit stress by improving the antioxidant systems and compatible solutes. Acta Physiologiae Plantarum, 42, 1-16. https://doi.org/10.1007/s11738-020-03137-6 Naseri, R., Barary, M., Zarea, M.J., Khavazi, K. and Tahmasebi, Z., 2017. Effect of plant growth promoting bacteria and Mycorrhizal fungi on growth and yield of wheat under dryland conditions. Journal of Sol Biology, 5, 49-66. [In Persian with English Summary]. https://doi.org/10.22092/sbj.2017.113121 Nazeri, P., Khashan, A., Khavazi, K., Ardakani, M.R. and Mirakhori, M., 2012. Effect of use microbial zinc granulated phosphorous bio fertilizer on growth Indices of bean. Journal of Agriculture and plant breeding. 8, 111-126. [In Persian with English Summary]. https://doi.org/10.22069/ejsms.2018.14172.1785 Parsapour, O., Bakhshandeh, A., Gharineh, M.H., Feisi, H. and Moradi Telavat, M.R., 2019. The effect of foliar application of nano-and bulk silicon dioxide particles on grain yield and redistribution of dry matter in wheat under drought stress. Environmental Stresses in Crop Sciences, 12, 377-388. [In Persian]. https://doi.org/10.22077/escs.2019.1191.1244 Pequeno, D.N., Hernandez-Ochoa, I.M., Reynolds, M., Sonder, K., MoleroMilan, A., Robertson, R.D., Lopes, M.S., Xiong, W., Kropff, M. and Asseng, S., 2021. Climate impact and adaptation to heat and drought stress of regional and global wheat production. Environmental Research Letters, 16, p.054070. https://doi 10.1088/1748-9326/abd970 Rao, D.S., Raghavendra, M., Gill, P., Madan, S. and Munjal, R., 2022. Effect of drought stress on phenological and yield attributes in Wheat (Triticum aestivum L.). Journal of Eco-friendly Agriculture, 17, 65-71. http://dx.doi.org/10.5958/2582-2683.2022.00014.4 Sangtarash, M.H., 2010. Responses of different wheat genotypes to drought stress applied at different growth stages. Pakistan journal of biological sciences: PJBS, 13, 114-119. https://doi.org/10.3923/pjbs.2010.114.119 Seyed Sharifi, R. and Gholinejad, E., 2021. Evaluation of agronomic and morphophysiological traits of crops. Mohaghegh Ardabili university press. Number page 410. Seyed Sharifi, R. and Nazarly, H., 2013. Effects of seed priming with plant growth promoting rhizobacteria (PGPR) on grain yield, fertilizer use efficiency and dry matter remobilization of sunflower (Helianthus annus L.) with various levels of nitrogen fertilizer. Journal of Agricultural Science and Sustainable Production. 23, 29-45. [In Persian with English Summary]. Seyed Sharifi, R., 2018. Effects of uniconazole and bio fertilizers on grain filling period and contribution of remobilization in grain yield of wheat under different moisture regimes in greenhouse condition. Environmental Stresses in Crop Sciences, 11, 515-531. [In Persian]. https://doi 10.22077/escs.2018.764.1148 Shao, H.B., Chu, L.Y., Jaleel, C.A. and Zhao, C.X., 2008. Water-deficit stress-induced anatomical changes in higher plants. Comptes rendus biologies, 331, pp.215-225. https://doi.org/10.1016/j.crvi.2008.01.002 Sharma, M., Delta, A.K. and Kaushik, P., 2021. Glomus mosseae and Pseudomonas fluorescens Application Sustains Yield and Promote Tolerance to Water Stress in Helianthus annuus L. Stresses, 1 (4), 305-316. https://doi.org/10.3390/stresses1040022 Tatar, Ö. Brück, H. and Asch, F.O.L.K.A.R.D., 2016. Photosynthesis and remobilization of dry matter in wheat as affected by progressive drought stress at stem elongation stage. Journal of agronomy and crop science, 202, 292-299. https://doi.org/10.1111/jac.12160 Vosoghi Rad, M., Jami Moeini, M., Taherian, M. and Armin, M., 2022. Accumulation and remobilization of assimilates in different genotypes of durum wheat under terminal drought stress. Journal of Crop Science and Biotechnology, 25, 199-214. https://doi.org/10.1007/s12892-021-00123-3 Wangiyana, W., Aryana, I.G.P.M. and Dulur, N.W.D., 2021. Mycorrhiza biofertilizer and intercropping with soybean increase anthocyanin contents and yield of upland red rice under aerobic irrigation systems. In IOP Conference Series: Earth and Environmental Science, 637(1), p. 012087. https://doi 10.1088/1755-1315/637/1/012087 Yadav, T., Kumar, A., Yadav, R.K., Yadav, G., Kumar, R. and Kushwaha, M., 2020. Salicylic acid and thiourea mitigate the salinity and drought stress on physiological traits governing yield in pearl millet-wheat. Saudi Journal of Biological Sciences, 27 (8), 2010-2017 https://doi.org/10.1016/j.sjbs.2020.06.030. Yaghoubi Khanghahi, M., Pirdashti, H., Rahimian, H., Nematzadeh, G. and Ghajar Sepanlou, M., 2019. The role of potassium solubilizing bacteria (KSB) inoculations on grain yield, dry matter remobilization and translocation in rice (Oryza sativa L.). Journal of Plant Nutrition, 42, 1165-1179. https://doi.org/10.1080/01904167.2019.1609511 | ||
آمار تعداد مشاهده مقاله: 606 تعداد دریافت فایل اصل مقاله: 319 |