Acil, T., Atalar, E., Sahiner, L., Kaya, B., Haznedaroglu, I.C., Tokgozoglu, L., & Oto, A. (2007). Effects of acute exercise on fibrinolysis and coagulation in patients with coronary artery disease. International Heart Journal, 48(3), 277-285. https://doi.org/10.1536/ihj.48.277
Ahmadizad, S., Movahdi. M., A., Jamshidi, Z., & Rezaeimanesh, D., (2018). Fibrinolitic factors response to different resistance exersice. Sport Physiology, 10(37), 152-139. [In persian]. https://doi.org/10.22089/spj.2018.1157
Ahmadizad, S., Nouri-Habashi, A., Rahmani, H., Maleki, M., Naderi, N., Lotfian, S., … & Salimian, M. (2016). Platelet activation and function in response to high intensity interval exercise and moderate continuous exercise in CABG and PCI patients. Clinical Hemorheology and Microcirculation, 64(4), 911-919. https://doi.org/10.3233/ch-168010
Bärtsch, P., Haeberli, A., & Straub, P.W. (1990). Blood coagulation after long distance running: antithrombin III prevents fibrin formation. Thrombosis and Haemostasis, 63(03), 430-434. https://doi.org/10.1055/s-0038-1645060
Cadroy, Y., Pillard, F., Sakariassen, K.S., Thalamas, C., Boneu, B., & Riviere, D. (2002). Strenuous but not moderate exercise increases the thrombotic tendency in healthy sedentary male volunteers. Journal of Applied Physiology, 93(3), 829-833. https://doi.org/10.1152/japplphysiol.00206.2002
Chen, C., Zhou, M., Ge, Y., & Wang, X. (2020). SIRT1 and aging related signaling pathways. Mechanisms of Ageing and Development, 187, 111215. https://doi.org/10.1016/j.mad.2020.111215
Cunha, R.R., de Carvalho Cunha, V.N., Segundo, P.R., Moreira, S.R., Kokubun, E., Campbell, C.S.G., … & Simoes, H.G. (2009). Determination of the lactate threshold and maximal blood lactate steady state intensity in aged rats. Cell Biochemistry and Function: Cellular Biochemistry and its Modulation by Active Agents or Disease, 27(6), 351-357. https://doi.org/10.1002/cbf.1580
Coswig, V.S., Barbalho, M., Raiol, R., Del Vecchio, F.B., Ramirez-Campillo, R., & Gentil, P. (2020). Effects of high vs moderate-intensity intermittent training on functionality, resting heart rate and blood pressure of elderly women. Journal of Translational Medicine, 18, 1-11. https://doi.org/10.1186/s12967-020-02261-8
Davies, N.A., Llwyd, O., Brugniaux, J.V., Davies, G.R., Marley, C.J., Hodson, D., … & Hawkins, K. (2016). Effects of exercise intensity on clot microstructure and mechanical properties in healthy individuals. Thrombosis Research, 143, 130-136. https://doi.org/10.1016/j.thromres.2016.05.018
Dmitrieva, N.I., & Burg, M.B. (2014). Secretion of von Willebrand factor by endothelial cells links sodium to hypercoagulability and thrombosis. Proceedings of the National Academy of Sciences, 111(17), 6485-6490. https://doi.org/10.1073/pnas.1404809111
Donato, A.J., Machin, D.R., & Lesniewski, L.A. (2018). Mechanisms of dysfunction in the aging vasculature and role in age-related disease. Circulation Research, 123(7), 825-848. https://doi.org/10.1161/circresaha.118.312563
El-Sayed, M.S., Jones, P.G, & Sale, C. (1999). Exercise induces a change in plasma fibrinogen concentration: fact or fiction? Thromb Research, 96(6), 467-72. https://doi.org/10.1016/s0049-3848(99)00140-1
El-Sayed, M., El-Sayed, A.Z., & Ahmadizad, S., (2004) Exercise and training effects on blood haemostasis in health and disease. Sports Medicine, 34(3), 181-200. https://doi.org/10.2165/00007256-200434030-00004
Handa, K., Terao, Y., Mori, T., Tanaka, H., Kiyonaga, A., Matsunaga, A., & Arakawa, K. (1992). Different coagulability and fibrinolytic activity during exercise depending on exercise intensities. Thrombosis Research, 66(5), 613-616. https://doi.org/10.1016/0049-3848(92)90317-4
Huskens, D., Roest, M., Remijn, J.A., Konings, J., Kremers, R.M., Bloemen, S., … & van Meel, R. (2016). Strenuous exercise induces a hyperreactive rebalanced haemostatic state that is more pronounced in men. Thrombosis and Haemostasis, 115(06), 1109-1119. https://doi.org/10.1160/th15-10-0821
Kahraman, S., Bediz, C.S., Pişkin, Ö., Aksu, I., Topçu, A., Yüksel, F., … & Demirkan, F. (2011). The effect of the acute submaximal exercise on thrombin activatable fibrinolysis inhibitor levels in young sedentary males. Clinical and Applied Thrombosis/Hemostasis, 17(4), 414-420. https://doi.org/10.1177/1076029610385672
Kicken, C.H., Miszta, A., Kelchtermans, H., & De Laat, B. (2018). Hemostasis during extreme exertion. Seminars in Thrombosis and Hemostasis, 44(7), 640-650. https://doi.org/10.1055/s-0038-1639502
Lippi, G., Salvagno, G.L., Tarperi, C., Gelati, M., Montagnana, M., Danese, E., … & Schena, F. (2018). Prothrombotic state induced by middle-distance endurance exercise in middle-aged athletes. Seminars in Thrombosis and Hemostasis, 44(08), 747-755. https://doi.org/10.1055/s-0038-1667115
Lyall, G.K., Davies, M.J., Ferguson, C., Porter, K.E., & Birch, K.M. (2019). In-exercise vascular shear rate during acute continuous and interval exercise: impact on endothelial function and miR-21. Journal of Applied Physiology, 127(6), 1754-1762. https://doi.org/10.1152/japplphysiol.00156.2019
Manchado, F.D.B., Gobatto, C.A., Voltarelli, F.A., & Rostom de Mello, M.A. (2006). Non-exhaustive test for aerobic capacity determination in swimming rats. Applied Physiology, Nutrition, and Metabolism, 31(6), 731-736. https://doi.org/10.1139/h06-079
Marriott, C.F., Petrella, A.F., Marriott, E., Boa Sorte Silva, N.C., & Petrella, R.J. (2021). High-intensity interval training in older adults: a scoping review. Sports Medicine-Open, 7(1), 1-24. https://doi.org/10.1186/s40798-021-00344-4
Menzel, K., & Hilberg, T. (2011). Blood coagulation and fibrinolysis in healthy, untrained subjects: effects of different exercise intensities controlled by individual anaerobic threshold. European Journal of Applied Physiology, 111(2), 253-260. https://doi.org/10.1007/s00421-010-1640-2
Neubauer, K., & Zieger, B. (2021). Endothelial cells and coagulation. Cell and Tissue Research, 1-8. https://doi.org/10.1007/s00441-021-03471-2
Ogoh, S., Washio, T., Suzuki, K., Iemitsu, M., Hashimoto, T., Iwamoto, E., … & Bailey, D.M. (2021). Greater increase in internal carotid artery shear rate during aerobic interval compared to continuous exercise in healthy adult men. Physiological Reports, 9(2), e14705. https://doi.org/10.14814/phy2.14705
Okhota, S., Melnikov, I., Avtaeva, Y., Kozlov, S., & Gabbasov, Z. (2020). Shear stress-induced activation of von Willebrand factor and cardiovascular pathology. International Journal of Molecular Sciences, 21(20), 7804. https://doi.org/10.3390/ijms21207804
Papadaki, M., Ruef, J., Nguyen, K.T., Li, F., Patterson, C., Eskin, S.G., … & Runge, M.S. (1998). Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells. Circulation Research, 83(10), 1027-1034. https://doi.org/10.1161/01.res.83.10.1027
Posthuma, J.J., van der Meijden, P.E., Ten Cate, H., & Spronk, H.M. (2015). Short-and Long-term exercise induced alterations in haemostasis: a review of the literature. Blood Reviews, 29(3), 171-178. https://doi.org/10.1016/j.blre.2014.10.005
Qvisth, V., Hagström-Toft, E., Enoksson, S., & Bolinder, J. (2008). Catecholamine regulation of local lactate production in vivo in skeletal muscle and adipose tissue: role of β-adrenoreceptor subtypes. The Journal of Clinical Endocrinology & Metabolism, 93(1), 240-246. https://doi.org/10.1210/jc.2007-1313
Rietveld, I., Lijfering, W., Le Cessie, S., Bos, M., Rosendaal, F., Reitsma, P., & Cannegieter, S. (2019). High levels of coagulation factors and venous thrombosis risk: strongest association for factor VIII and von Willebrand factor. Journal of Thrombosis and Haemostasis, 17(1), 99-109. https://doi.org/10.1111/jth.14343
Seo, D.Y., Lee, S.R., Kim, N., Ko, K.S., Rhee, B.D., & Han, J. (2014). Humanized animal exercise model for clinical implication. Pflugers Arch, 466(9), 1673-1687. https://doi.org/10.1007/s00424-014-1496-0
Thrall, G., & Lip, G.Y. (2005). Exercise and the prothrombotic state: a paradox of cardiovascular prevention or an enhanced prothrombotic state? Arterioscler Thromb Vasc Biol, 25(2), 265-266. https://doi.org/10.1161/01.atv.0000154579.11213.da
Terada, S., Tabata, I., & Higuchi, M. (2004). Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle. The Japanese Journal of Physiology, 54(1), 47-52. https://doi.org/10.2170/jjphysiol.54.47
Tzoran, I., Hoffman, R., & Monreal, M. (2018). Hemostasis and thrombosis in the oldest old. Seminars in Thrombosis and Hemostasis, 44(7), 624-631. https://doi.org/10.1055/s-0038-1657779
van Loon, J.E., Sonneveld, M.A., Praet, S.F., de Maat, M.P., & Leebeek, F.W. (2014). Performance related factors are the main determinants of the von Willebrand factor response to exhaustive physical exercise. PLoS One, 9(3), e91687. https://doi.org/10.1371/journal.pone.0091687
Vasegowda, S. (2018). Swimming helps elderly population to improve mental speed and attention. International Journal of Clinical and Experimental Physiology, 5(4), 200-202. https://doi.org/10.5530/ijcep.2018.5.4.22
Wang, Y.X., Liu, H.B., Li, P.S., Yuan, W.X., Liu, B., Liu, S.T., … & Qin, K.R. (2019). ROS and NO dynamics in endothelial cells exposed to exercise-induced wall shear stress. Cellular and Molecular Bioengineering, 12(1), 107-120. https://doi.org/10.1007/s12195-018-00557-w
Wilkerson, W.R., & Sane, D.C. (2002). Aging and thrombosis. Seminars in Thrombosis and Hemostasis, 28(6), 555-568. https://doi.org/10.1055/s-2002-36700
Young, P.A., Migliorini, M., & Strickland, D.K. (2016). Evidence that factor VIII forms a bivalent complex with the low density lipoprotein (LDL) receptor-related protein 1 (LRP1): identification of cluster IV on LRP1 as the major binding site. Journal of Biological Chemistry, 291(50), 26035-26044. https://doi.org/10.1074/jbc.m116.754622