Abdelaal, M., le Roux, C.W., & Docherty, N. G. (2017). Morbidity and mortality associated with obesity. Annals of Traslational Medicine, 5(7). http://dx.doi.org/10.21037/atm.2017.03.107
Amano, K., Matsubara, H., Iba, O., Okigaki, M., Fujiyama, S., Imada, T., & Yokoyama, M. (2003). Enhancement of ischemia-induced angiogenesis by eNOS overexpression. Hypertension, 41(1), 156-162. http://dx.doi.org/10.1161/01.hyp.0000053552.86367.12
Armstrong, L.C., & Bornstein, P. (2003). Thrombospondins 1 and 2 function as inhibitors of angiogenesis. Matrix Biology, 22(1), 63-71. http://dx.doi.org/10.1016/s0945-053x(03)00005-2
Baek, K.-W., Kim, S.-J., Kim, B.-G., Jung, Y.-K., Hah, Y.-S., Moon, H.Y. … & Kim, J.-S. (2022). Effects of lifelong spontaneous exercise on skeletal muscle and angiogenesis in super-aged mice. Plos One, 17(8), e0263457. http://dx.doi.org/10.1371/journal.pone.0263457
Bartoli, F., Debant, M., Chuntharpursat-Bon, E., Evans, E.L., Musialowski, K. E., Parsonage, G., … & Bowen, T.S. (2022). Endothelial Piezo1 sustains muscle capillary density and contributes to physical activity. The Journal of Clinical Investigation, 132(5). http://dx.doi.org/10.1172/jci141775
Breen, E., Johnson, E., Wagner, H., Tseng, H., Sung, L., & Wagner, P. (1996). Angiogenic growth factor mRNA responses in muscle to a single bout of exercise. Journal of Applied Physiology, 81(1), 355-361. http://dx.doi.org/10.1152/jappl.1996.81.1.355
Brown, M., & Hudlicka, O. (2003). Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases. Angiogenesis, 6(1), 1-14. http://dx.doi.org/10.1023/a:1025809808697
Brown, M.D., & Hudlická, O. (2002). Angiogenesis in Skeletal and Cardiac Muscle. Pysiological Reviews, 213-248. Springer. http://dx.doi.org/10.1007/978-1-59259-126-8_14
Chinsomboon, J., Ruas, J., Gupta, R.K., Thom, R., Shoag, J., Rowe, G.C., … & Arany, Z. (2009). The transcriptional coactivator PGC-1α mediates exercise-induced angiogenesis in skeletal muscle. Proceedings of the National Academy of Sciences, 106(50), 21401-21406. http://dx.doi.org/10.1073/pnas.0909131106
Cho, C.-H., Jun Koh, Y., Han, J., Sung, H.-K., Jong Lee, H., Morisada, T., … & Oike, Y. (2007). Angiogenic role of LYVE-1–positive macrophages in adipose tissue. Circulation Research, 100(4), e47-e57. http://dx.doi.org/10.1161/01.res.0000259564.92792.93
Combes, A., Dekerle, J., Webborn, N., Watt, P., Bougault, V., & Daussin, F.N. (2015). Exercise‐induced metabolic fluctuations influence AMPK, p38‐MAPK and Ca MKII phosphorylation in human skeletal muscle. Physiological Reports, 3(9), e12462. http://dx.doi.org/10.14814/phy2.12462
Corvera, S., Solivan-Rivera, J., & Yang Loureiro, Z. (2022). Angiogenesis in adipose tissue and obesity. Angiogenesis, 1-15. http://dx.doi.org/10.1007/s10456-022-09848-3
Czarkowska-Paczek, B., Zendzian-Piotrowska, M., Bartlomiejczyk, I., Przybylski, J., & Gorski, J. (2011). The influence of physical exercise on the generation of TGF-β1, PDGF-AA, and VEGF-A in adipose tissue. European Journal of Applied Physiology, 111(5), 875-881. http://dx.doi.org/10.1007/s00421-010-1693-2
Disanzo, B.L., & You, T. (2014). Effects of exercise training on indicators of adipose tissue angiogenesis and hypoxia in obese rats. Metabolism, 63(4), 452-455. http://dx.doi.org/10.1016/j.metabol.2013.12.004
Frayn, K., & Karpe, F. (2014). Regulation of human subcutaneous adipose tissue blood flow. International Journal of Obesity, 38(8), 1019-1026. http://dx.doi.org/10.1038/ijo.2013.200
Gavin, T.P., & Wagner, P.D. (2001). Effect of short-term exercise training on angiogenic growth factor gene responses in rats. Journal of Applied Physiology, 90(4), 1219-1226. http://dx.doi.org/10.1152/jappl.2001.90.4.1219
Goumans, M.-J., Lebrin, F., & Valdimarsdottir, G. (2003). Controlling the angiogenic switch: a balance between two distinct TGF-b receptor signaling pathways. Trends in Cardiovascular Medicine, 13(7), 301-307. http://dx.doi.org/10.1016/s1050-1738(03)00142-7
Hatano, D., Ogasawara, J., Endoh, S., Sakurai, T., Nomura, S., Kizaki, T., Ohno, H., Komabayashi, T., & Izawa, T. (2011). Effect of exercise training on the density of endothelial cells in the white adipose tissue of rats. Scandinavian Journal of Medicine & Science in Sports, 21(6), e115-e121. http://dx.doi.org/10.1111/j.1600-0838.2010.01176.x
Hoier, B., & Hellsten, Y. (2014). Exercise‐induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation, 21(4), 301-314. http://dx.doi.org/10.1111/micc.12117
Høydal, M.A., Wisløff, U., Kemi, O.J., & Ellingsen, Ø. (2007). Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. European Journal of Preventive Cardiology, 14(6), 753-760. http://dx.doi.org/10.1097/hjr.0b013e3281eacef1
Jäger, S., Handschin, C., St.-Pierre, J., & Spiegelman, B.M. (2007). AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proceedings of the National Academy of Sciences, 104(29), 12017-12022. http://dx.doi.org/10.1073/pnas.0705070104
Jain, R.K. (2005). Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science, 307(5706), 58-62. http://dx.doi.org/10.1126/science.1104819
Jayedi, A., Soltani, S., Zargar, M.S., Khan, T.A., & Shab-Bidar, S. (2020). Central fatness and risk of all cause mortality: systematic review and dose-response meta-analysis of 72 prospective cohort studies. British Medical Journal, 370. http://dx.doi.org/10.1136/bmj.m3324
Lawler, P.R., & Lawler, J. (2012). Molecular basis for the regulation of angiogenesis by thrombospondin-1 and-2. Cold Spring Harbor Perspectives in Medicine, 2(5), a006627. http://dx.doi.org/10.1101/cshperspect.a006627
Lee, H.J. (2018). Exercise training regulates angiogenic gene expression in white adipose tissue. Journal of Exercise Rehabilitation, 14(1), 16. http://dx.doi.org/10.12965/jer.1836010.005
Leick, L., Hellsten, Y., Fentz, J., Lyngby, S.S., Wojtaszewski, J.F., Hidalgo, J., & Pilegaard, H. (2009). PGC-1α mediates exercise-induced skeletal muscle VEGF expression in mice. American Journal of Physiology-Endocrinology and Metabolism, 297(1), E92-103. http://dx.doi.org/10.1152/ajpendo.00076.2009
Panina, Y.A., Yakimov, A.S., Komleva, Y., Morgun, A.V., Lopatina, O.L., Malinovskaya, N.A., … & Salmina, A.B. (2018). Plasticity of adipose tissue-derived stem cells and regulation of angiogenesis. Frontiers in Physiology, 9, 1656. http://dx.doi.org/10.3389/fphys.2018.01656
Prior, B.M. Yang, H., & Terjung, R.L. (2004). What makes vessels grow with exercise training? Journal of Applied Physiology, 97(3), 1119-1128. http://dx.doi.org/10.1152/japplphysiol.00035.2004
Richardson, R., Wagner, H., Mudaliar, S., Saucedo, E., Henry, R., & Wagner, P. (2000). Exercise adaptation attenuates VEGF gene expression in human skeletal muscle. American Journal of Physiology-Heart and Circulatory Physiology, 279(2), H772-H778. http://dx.doi.org/10.1152/ajpheart.2000.279.2.h772
Rognmo, Ø., Hetland, E., Helgerud, J., Hoff, J., & Slørdahl, S.A. (2004). High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. European Journal of Preventive Cardiology, 11(3), 216-222. http://dx.doi.org/10.1097/01.hjr.0000131677.96762.0c
Rutkowski, J.M., Davis, K.E., & Scherer, P. (2009). Mechanisms of obesity and related pathologies: the macro‐and microcirculation of adipose tissue. The Federation of European Biochemical Societies Journal, 276(20), 5738-5746. http://dx.doi.org/10.1111/j.1742-4658.2009.07303.x
Takahashi, H., & Shibuya, M. (2005). The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clinical Science, 109(3), 227-241. http://dx.doi.org/10.1042/cs20040370
Torok, D.J., Duey, W.J., Bassett Jr, D.R., Howley, E.T., & Mancuso, P. (1995). Cardiovascular responses to exercise in sprinters and distance runners. Medicine and Science in Sports and Exercise, 27(7),1050-1056. http://dx.doi.org/10.1249/00005768-199507000-00014
Van Pelt, D.W., Guth, L.M., & Horowitz, J.F. (2017). Aerobic exercise elevates markers of angiogenesis and macrophage IL-6 gene expression in the subcutaneous adipose tissue of overweight-to-obese adults. Journal of Applied Physiology, 123(5), 1150-1159. http://dx.doi.org/10.1152/japplphysiol.00614.2017
Ziada, A., Hudlicka, O., & Tyler, K. (1989). The effect of long-term administration of α1-blocker prazosin on capillary density in cardiac and skeletal muscle. Pflügers Archiv, 415(3), 355-360. http://dx.doi.org/10.1007/bf00370888