
تعداد نشریات | 21 |
تعداد شمارهها | 301 |
تعداد مقالات | 3,173 |
تعداد مشاهده مقاله | 3,211,904 |
تعداد دریافت فایل اصل مقاله | 2,380,332 |
تاثیر تنش شوری کلریدسدیم و محلولپاشی با سریم اکسید و نانوذره آهن بر رشد و برخی صفات فیزیولوژیک اسطوخودوس (.Lavandula officinalis L) | ||
تنشهای محیطی در علوم زراعی | ||
مقاله 17، دوره 16، شماره 1، فروردین 1402، صفحه 247-261 اصل مقاله (737.27 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/escs.2022.4538.2039 | ||
نویسنده | ||
لمیا وجودی* | ||
دانشیار، گروه زراعت و اصلاح نباتات دانشکده کشاورزی، دانشگاه شهید مدنی آذربایجان، تبریز | ||
چکیده | ||
بهمنظور بررسی تأثیر محلولپاشی با سریماکسید و نانوذره آهن (صفر، 2.5 و 5 میلیگرم در لیتر) تحت تنش -شوری کلریدسدیم (صفر، 50 و 100 میلیمولار کلریدسدیم) دو آزمایش جداگانه در قالب طرح فاکتوریل بر مبنای طرح کاملا تصادفی در گلخانه اجرا شد. در آزمایش اول تاثیر محلولپاشی با نانوذره آهن و در آزمایش دوم تاثیر محلولپاشی با سریماکسید بر رشد و برخی صفات فیزیولوژیک اسطوخودوس تحت تنش شوری مورد ارزیابی قرار گرفت. نتایج آزمایش اول نشان داد وزنخشک بخش هوایی گیاه، فعالیت کاتالاز و محتوای آهن تحت تاثیر اثرات مستقل تیمارهای تنش شوری و محلولپاشی قرار گرفت. محتوای پراکسید هیدروژن ، فنل کل و درصد اسانس اسطوخودوس تحت تاثیر اثرات متقابل تنش شوری و محلولپاشی با نانوذره آهن قرار گرفت. در آزمایش دوم عملکرد گیاه (افزایش 25 درصد نسبت به تیمار شاهد)، محتوای فنل کل تحت تاثیر اثرات متقابل تیمارهای آزمایشی قرار گرفت. فعالیت کاتالاز، پراکسید هیدروژن، محتوای پتاسیم تحت تاثیر اثرات مستقل تیمارهای آزمایشی قرار گرفت. بالاترین محتوای پتاسیم و نسبت پتاسیم به سدیم در تیمار محلولپاشی با 2.5 و 5 میلیگرم در لیتر سریم اکسید مشاهده شد. نتایج حاصل از تجزیه GC/MS نشان داد Linalool و 1-8-Cineol (جزء غالب اسانس اسطوخودوس در تیمارهای تنش شوری کلریدسدیم با محلولپاشی 5 میلیگرم در لیتر سریم اکسید بود. در کل از مجموع دو آزمایش انجام شده چنین میتوان نتیجهگیری نمود که محلولپاشی موجب بهبود صفات فیزیولوژیک گیاه در شرایط کنترل شد. تنش شوری تاثیر منفی بر عملکرد، برخی صفات فیزیولوژیک گیاه داشت. تحت تنش شوری، محلولپاشی به غیر از محتوای فنل و محتوای اسانس و وزنخشک گیاه تاثیر مثبت در کنترل تنش شوری را نداشت. درکل چنین میتوان نتیجهگیری کردکه اسطوخودوس گیاهی حساس به تنش شوری است و بهمنظور کنترل بهتر تنش شوری پیشنهاد میشود تاثیر سطوح بالاتر تیمارهای مورد استفاده در محلولپاشی در کنترل تنش شوری مورد آزمون قرار گیرد. | ||
کلیدواژهها | ||
اسانس؛ پرولین؛ عملکرد؛ عناصر | ||
مراجع | ||
Amaranathareddy, V., Lokesh, U., Venkatesh, B., Sudhakar. C., 2015. Pb-stress induced oxidative stress caused alterations in antioxidant efficacy in two groundnut (Arachis hypogaea L.) cultivars. Agricultural Sciences. 6, 1283-1297. AOAC. 1990. Official Methods of Analysis. Association of Official Agricultural Chemists, Washington, DC. Aazami, M.A., Vojodi Mehrabani, L., Hashemi, T., Hassanpouraghdam, M.B., Rasouli, F., 2022. Soil-based nano-gharphene oxide and foliar selenium and nano-Fe influence physiological responses of Sultana grape under salinity. Scientific Reports. 1, 24234. http://dx.doi.org/10.1038/s41598-022-08251-8 Chrysargyris, A., Michailidi, E.,Tzortzakis, N., 2018. Physiological and biochemical responses of Lavandula angustifolia to salinity under mineral foliar application. Frontiers in Plant Science. 9: 489. https://doi.org/10.3389/fpls.2018.00489 Cao, Z., Rossi, L., Stowers, C., Zhang, W., Lombardini, L., Ma, X., 2018. The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max L. Merr.) under different soil moisture conditions. Environmental Science and Pollution Research. 25, 930-939. Del Rio, L.A., 2015. ROS and RNS in plant physiology: An overview. Journal of Experimental Botany. 66, 2827–2837. Fedina, I., Georgieva, K., Velitchkova, M., Grigorova, I., 2006. Effect of pretreatment of barley seedlings with different salts on the level of UV-B induced and UV-B absorbing compounds. Environmental and Experimental Botany. 56, 225-230. Gohari, G., Safai, F., Panahirad, S., Akbari, A., Rasouli, F., Dadpour, M.R., Fotopoulos V., 2020. Modified multiwall carbon nanotubes display either phytotoxic or growth promoting and stress protecting activity in Ocimum basilicum L. in a concentration-dependent manner. Chemosphere. 249, Article 126171. http://dx.doi.org/10.1016/j.chemosphere.2020.126171 Hassanpouraghdam, M.B., Vojodi Mehrabani, L., kheirollahi, N., Soltanbeigi, A., Khoshmaram, L., 2021. Foliar application of graphene oxide, Fe, and Zn on Artemisis dracunculus L. under salinity. Scientia Agricola. http://dx.doi.org/10.1590/1678-992x-2021-0202. Hassanpouraghdam, M.B., Vojodi Mehrabani, L., TZortzakis, N., 2019. Foliar application of Nano-Zinc and Iron effects physiological attributes of ROS Rosmarines officinal is and quietness NaCl salinity depression. Journal of Soil Science and Plant Nutrition. http://dx.doi.org/1001007/s4/29-019-00111-1 Hassanpouraghdam, M.B., Vojodi Mehrabani, L., Hajisamadi Asl, B., Rostami, A., 2011. Essential oil constituents of Lavandula officinalis Chaix. from Northwest Iran. Chemija. 22, 167-171. Hasan Zadeh Mommodi, M., Panahi Rad, S., Bahrami, M. K., Kulaki, M., Gohari, G.H., 2021. Cerium oxide nanoparticles (CeO2-NPs) improve growth parameters and antioxidant defense system in Moldavian Balm (Dracocephalum moldavica L.) under salinity stress. Plant stress. 1, 10006. https://dx.doi.org/10.1016/j.stress.2021.100006 Heath, R.L., Packer, L., 1968. Photo peroxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics.125, 189-198. Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha, M.S., Saleem, M. H., Adil, M., Heidari, P., 2020. An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. International Journal of Molecular Sciences. 21, 148-158. Khan, M.N., Li, Y., Khan, Z., Chen, L., Liu, J., Hu, J., Wu, H. 2021. Nanocoria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and a1-amylase activities. Journol of Nanobiotechnology. 19, 276. https://dx.doi.org/10.21203/rs.3.rs-642905/v1. Kim, K.H., Tsao, R., Yang, R., Cui, S.W., 2006. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis condition. Food Chemistry. 95, 466-473. Kumar, D. Al Hassan, M., Naranjo, M.A., Agrawal, V., Boscaiu, M., Vicente, O., Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLoS ONE, 12, 2017, Article e0185017. https://dx.doi.org/10.1371/journal.pone.0185017 Liu, J., Li, G., Chen, L., Gu, J., Wu, H., Li, Z., 2021. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio. Journal of Nanobiotechnology. 19, 153. https://dx.doi.org/10.21203/rs.3.rs-210835/v1 Luhova, L., Lebeda, A., Hederorva, D., Pec, P., 2003. Activities of oxidase, peroxidase and catalase in seedlings of Pisum sativum L. under different light conditions. Plant Soil and Enviornment. 49, 151-157. Miller, G.W., Huang, J., Welkie, G.W., Pushmik, J.C., 1995. Function of iron in plants with special emphasis on chloroplast and photosynthetic activity. In: Abadia, J. (Ed.), Iron nutrition in soil and plants. Kluwer Academic publishers. Dordecht, 19-28. Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59, 651–681. Paryan, S., Chorbanpour, M., Hadian, J., 2020. Influence of CeO2-Nanoparticles on morpho-physiological tritas and tanshinone contents of roots in Salvia miltiorrihiza Bunge upon foliar and soil application methods. Journal of Medicinal Plant. 19, 168-187. [In Persian with English Summary]. Perez- Labrada, F., Lopez-Vargas, E.R., Ortega-Ortiz, H., Codwnas –Pliego, G., Benavides –Mendoza, A., 2019. Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants. 151, https://dx.doi.org/10.3390/plants8060151 Rossi, L., Zhang, W., Ma, X., 2017. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napous L. modifying the formation of root apoplastic barriers. Environmental Pollution. 229, 132-138. Singh, P., Arif, Y., Siddiqui, H., Sami, F., Zaidi, R., Azam, A., Alam, P., Hayat, S., 2021. Nanoparticles enhances the salinity toxicity tolerance in Linum usitatissimum L. by modulating the antioxidative enzymes, photosynthetic efficiency, redox status and cellular damage. Ecotoxicology and Environmental Safety. 213, https://dx.doi.org/10.1016/j.ecoenv.2021.112020 Turkan, I., Demiral, T., 2009. Recent developments in understanding salinity tolerance. Environmental and Experimental Botany. 67, 2-9. Turkan, I., 2017. Emerging roles for ROS and RNS—Versatile molecules in plants. Journal of Experimental Botany. 69, 3313–3315. Valizadeh Kamran, R., Vojodi Mehrabani, L., Pessarakli, M., 2017. Effects of foliar application of FeSO4 and NaCl salinity on vegetative growth, antioxidant enzymes activity, and malondialdehyde content of Tanacetum balsamita L. Communications in Soil Science and Plant Analysis. 48, 1852-1859. Vojodi Mehrabani, L., M B. Hassanpouraghdam and T. Shamsi-Khotab. 2018. The effects of common and nano-zinc foliar application on the alleviation of salinity stress in (Rosmarinus officinalis L.). Acta Scientiarum PolonorumHortorum Cultus. 17, 65-73. Zhu, J.K., 2016. Abiotic stress signaling and responses in plants. Cell. 167, 313-324. | ||
آمار تعداد مشاهده مقاله: 574 تعداد دریافت فایل اصل مقاله: 426 |