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Abstract 

Due to the difficulty in measurement of transverse velocity in floods, it is necessary to use appropriate 

models for this aim. Hydrodynamic complexity of the flow in the middle of the flood is another reason 

for usage of precise models. Accurate prediction of flows is very difficult due to the complexity of 

its nature and the lack of accurate data. Here, two-dimensional modeling of the flood has been done 

using the finite element method (FEM). The case study is a real field river. The achieved results from 

the finite element model are compared with the observational data at three stations. In order to 

evaluate the model performance, the root mean square error (RMSE) is calculated. The relative error 

and the RMSE are 0.143 and 0.229 m, respectively. This amount of value indicates the high accuracy 

of the proposed model. In addition, computational cost including time spending and efficiency of 

FEM is satisfactory and this model can be used as a good tool for flow simulation. 
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1. Introduction 

The most important specification of shallow 

water is that the vertical dimensions of the flow 

compared to its horizontal case, are very small. 

Therefore, the distribution of depth pressure 

can be considered hydrostatic. These 

assumptions lead to considerable 

simplification in mathematical formulation 

and numerical procedure (Fread, 1985). 

Flows naturally are three-dimensional and, 

factors such as: bed friction, boundary 

conditions and depth of flows, due to the 

changes in temperature or salinity in depth are 

the reasons that cause changes in the third 

dimension (vertical dimension). However, in 

many practical problems, these changes can be 

ignored and appropriate information can be 

obtained at a low cost by only using two-

dimensional equations of shallow water (depth 

is considered as average) (Bates et al., 1994). 

The application of shallow water equation 

should be attributed to Laplace who has many 

researches in this matter. Remarkable work has 

been done in the field of tidal currents, known 

as Laplace tidal equations and a special form 

of shallow water equations. Using numerical 

solution of shallow water equations returns to 

the use of digital computers in the late 1940s. 

The first numerical work in this field, was the 

simulation of atmospheric currents by Charney 

in 1950 and ocean currents by Hansen in 1956 

(Vreugdenhil, 1994). 

Since then, many researchers have solved 

various forms of this equation with different 

numerical methods and in different 

engineering applications. The developed 

models are mainly based on the finite 

difference method (FDM) and this method is 

still ongoing. Since the late 1960s, the finite 

element method known as a powerful tool in 

solving of partial differential equations has 

attracted the attention of scientists and 

researchers. Solving these equations by finite 

element method began in the early 1970s. For 

example, the study of Wong and his colleagues 

in the field of meteorology (Berger and 

Stockstill, 1995). 
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Since then, many models have been 

developed in order to solve shallow water 

equations by finite element method. For 

example, the study of Berger and Stockstill 

(1995) provide a model for investigation of 

high-velocity flows in channels (Berger and 

Stockstill, 1995). Abril (2002) presented a 

quasi-two-dimensional mathematical model 

for hydraulic analysis of flow in multiple 

sections with straight path. The analytical 

solution of this model is more complex than 

the Shiono and Knight model and therefore, its 

application is limited to only rivers (Abril, 

2002). Ayubzadeh and Zahiri (2003) also used 

the analytical solution of the Quasi-Two-

Dimensional model of Shiono and Knight 

(1991) to simulate the hydraulic flow in the 

Minab River (Ayyoubzadeh and Zahiri, 2003). 

Barzegaran et al. (2017), used reinforced 

Riemann method for simulation of bed 

sediment. They found their results satisfactory. 

Khorashadizadeh et al. (2018) carry out the 

sensitivity analysis of finite volume shallow 

water model with RSA method, and find that 

RSA role as an efficient method for this aim. 

Ghobadian and Mehrmousavi (2019) used a 

numerical simulation for solving shallow 

water equations in two-dimensional condition. 

Deymevar and Akbarpour (2017) modeled 

dam failure with using meshless local Petrov-

Galerkin with solving shallow water equations. 

They only simulate surface water without 

comparison with analytical and observational 

results, as they noted there is no analytical 

relation for their problem. 

Behzadi and Newman (2020) used a 

numerical model based on a semi-discrete 

Streamline Upwind Petrov–Galerkin scheme 

for solving shallow water equations with 

arbitrary bed topography and wetting–drying 

fronts. The proposed model is verified through 

well-known test cases including the traditional 

dam break problem, evolution of a dam break 

wave over an obstacle, and oscillation of a 

bead of water in a parabolically-shaped basin. 

The acquired results presented the good 

performance of the model. 

Izem and Seaid (2021) presented a well-

balanced Runge-Kutta discontinuous Galerkin 

method for the numerical solution of 

multilayer shallow water equations with mass 

exchange and non-flat bottom topography. The 

accuracy of the proposed model is examined 

for several examples of multilayer free-surface 

flows over both flat and non-flat beds. The 

performance of the method is also 

demonstrated by comparing the results 

obtained using the proposed method to those 

obtained using the incompressible hydrostatic 

Navier-Stokes equations, and it was accurate. 

A review of the researchers' studies shows 

that the use of analytical solution of quasi-two-

dimensional mathematical model in irregular 

natural rivers has many limitations or does not 

exist (Deymevar and Akbarpour, 2017). 

However, the finite element numerical method 

has some errors in a river with irregular 

boundaries, but it is more efficient and 

accurate than traditional models.  

In this study, a 2D modeling of floodplain 

flow is used by finite element method. 

Although, this method has some limitation in 

cases with complicated geometry, but still 

accurate and stable in solving procedure. FDM 

is going to apply in a river case with irregular 

geometry in order to simulate the movement of 

shallow water. 

 

2. Material and methods 

2.1. Governing Equation 

The TELEMAC-2D code solves the 

second-order partial differential equations for 

the average fluid flow rate (shallow water 

equations) resulting from the complete Navier-

Stokes three-dimensional equations. This 

gives a system consisting of one equation for 

mass continuity and two force-motion 

equations. The equations are as follows (Rates 

et al., 1999): 
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In the above equations, u and v are the 

velocity components in the Cartesian x and y 

directions (m/s), h is the depth of flow (m), Zf 

stands for bed height (m). Sx and Sy are source 

terms, g is the gravitational acceleration, and t 

is time. This model uses a constant eddy 

viscosity, length mixing, or K-𝜀 turbulence 

scheme.  

 

2.1.1. Navier-Stokes and Reynolds 

equations 

The Navier-Stokes equations represent 

mass conservation or continuity equation, 

which are expressed as follows (Vreugdenhil, 

1994). 
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where, 𝑓 is the Coriolis acceleration 

parameter and obtained from the following 

equation: 

(7) 𝑓 = 2Ω sin Φ  
Also 𝜏𝑖𝑗  is viscosity stress which is defined 

in terms of fluid deformation rate as follows: 

(8) 
𝜏𝑖𝑗

𝜌
= 𝜈 (

𝜎𝑢𝑖

𝜎𝑥𝑖
+

𝜎𝑢𝑗

𝜎𝑥𝑖
) 

where 𝜈 is a kinematic viscosity. 

The general form of the equation is obtained 

by applying the principle of mass conservation 

to the volumetric element of the fluid as 

follows (Berger and Stockstill, 1995). 

(9) 

𝜎𝑝

𝜎𝑡
+

𝜎

𝜎
(𝜌𝑢)

+
𝜎

𝜎
(𝜌𝑣) +

𝜎

𝜎𝑧
(𝜌𝑤)

= 0 

Density of water (𝜌) depends on pressure, 

temperature and salinity. In this condition, 

considering that the fluid is incompressible and 

regardless of temperature and salinity changes, 

a constant density value is assumed: 

(10) 
𝜎𝜌

(𝑡. 𝑥. 𝑦. 𝑧)
= 0    

Thus, the mass equation becomes simpler: 

(11) 
𝜎𝑢

𝜎𝑥
+

𝜎𝜈

𝜎𝑦
+

𝜎𝑤

𝜎𝑧
= 0 

 

 
Fig. 1. Definition of coordinate system and 

boundaries (Berger and Stockstill, 1995) 

 

2.2.Numerical Formulation 

2.2.1. The Residual Weighted  

The weighted residuals method is one of the 

most common direct methods of calculating 

unknown filed variable with solving partial 

differential equations. In this method, the 

partial differential equations are estimated by 

the approximation function 𝑢 ̂ as follows: 
(12) 𝐿(𝑢) = 𝑓 

(13) 𝑢̂ = 𝜙0 + ∑ 𝑐𝑖𝜙𝑖       

𝑛

𝑖=1

 

Where 𝜙𝑖 and 𝜙0 are approximation 

functions. The approximation error is 

expressed by the following formula: 
(14) 𝐸 = 𝐿(𝑢) − 𝑓 

The main idea in using the weighted 

residual method is to minimize this error as 

much as possible. It should be noted that the 

value of approximate field nodes in computing 

of the residual Error (E) is not the same as each 

other. Therefore, the unknown coefficients 
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𝐶𝑖 are determined by considering the following 

integrals equal to zero: 

(15) 
∫ 𝑊𝑖𝐸 𝑑Ω

 

Ω

= 0   

 (𝑖 = 1. ⋯ . 𝑛) 

where Ω is the domain and Wi is the weight 

functions. In Galerkin method, which is one of 

the common weighted methods, weight values 

are taken equal to approximation functions, i.e: 
(16) 𝑊𝑖 = 𝜙𝑖 

In the following section, the weighted 

residual form the governing equations will be 

determined. 

2.2.2. The Residual Weighted Form of 

the Continuity Equation 

The continuity equation in its weighted 

residual form is as the follows: 

(17) 
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In this equation h, u, and v are the 

approximate values of ℎ̂, 𝑢̂ and 𝑣 respectively. 

Equation (17) can be written as follows 
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2.2.3. Discretization of Equations by 

FEM 

In order to spatially discrete the equations, 

the domain is divided into triangular elements 

with three nodes. The unknown variables h, u 

and v are approximated by the linear shape 

functions in each element based on the values 

of the unknowns in the nodes. As it mentioned 

before, due to the usage of Galerkin method, 

weight functions (Wi) are equal to shape 

functions (𝑁𝑖), and thus the following 

equations are obtained: 

(19) ℎ = ∑ 𝑁𝑖

𝑁𝑁

𝑖=1

(𝑥, 𝑦). ℎ𝑖(𝑡) 
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where NN is the total number of nodes, ℎ𝑖, 

𝑢𝑖 and 𝑣𝑖 are the values of the dependent 

variables in each node. The form functions 𝑁𝑖 

are defined in the range  corresponding to the 

form functions 𝑁𝑖
(𝑒)

 in the range of elements, 

so that the definition of the function in the 

domain of each element adjacent to node i 

corresponds to the definition of the function as 

the form function of node i of that element. In 

addition, the value of the function in the range 

of non-adjacent elements of node i is equal to 

zero and node i is equal to one. 

2.2.4. Galerkin Form of the Continuity 

Equation 

The Galerkin form of the continuity 

equation for node i, is explained as follows: 
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It should be noted that a set of equations 

will be appeared which is solved by removing 

Gauss method. 

 

2.3.Conceptual Model 

2.3.1. Boundary conditions  

A dynamic flood event that occurred on 

January 8, 1996 is considered for simulation. 

Boundary conditions include upstream and 

downstream are considered as flow rate and 

water level elevation, respectively. This 

boundary condition creates the problem of no 

circulation in the downstream. In order to keep 

the solution of differential equations constant, 

there is a need for boundary conditions.  
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In order to solve shallow water equations, 

boundary conditions in the bed floor are 

required first. Boundary conditions at the 

surface and bed floor are divided into two 

categories: cinematic conditions and dynamic 

conditions, each of which are as follows 

(Abril, 2002; Gee et al., 1990) 

 

2.3.2. Kinematic boundary conditions 

These conditions indicate the fact that water 

particles are not able to move and they are 

fixed. For a fixed boundary, this means that the 

vertical component of velocity must be zero 

(Abril, 2002). 

(29) 
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b b
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z z
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On the free surface this issue is a bit more 

complicated because the free surface is 

changing and moving. Therefore, the relative 

velocity perpendicular to the surface must be 

zero, i.e: 

(30) 
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H H H
u v w
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2.3.3. Dynamic boundary conditions 

These conditions are about the forces 

enforced by the edges on the fluid. In the floor, 

it can be assumed that the viscous fluid adheres 

to the floor, i.e: (Abril, 2002): 

(31) 𝑢 = 𝑣 = 0 
which is known as dynamic conditions. At 

the free surface, the continuity of the stresses 

is taken into account, in other words the 

stresses below of free surface is equal to the air 

stresses above it. In fact, surface tension is no 

longer exist, therefore: 

(32) 𝑝 = 𝑝𝑎 

where 𝑝𝑎 is the atmospheric pressure.  

Shear stresses may be applied by the wind. 

The amount of these shear stresses (𝜏𝑠𝑥. 𝜏𝑠𝑦) 

depends to the surface water and it is obtained 

from the following equation: 

(33) 

      

sx xx xy xz

H H
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A similar relation can be obtained for the y 

direction (Anderson et al., 2015) 

 

 

2.4.Model Setup 

2.4.1. Case Study 

A wide river with dimension of 50 m*10 m 

and a maximum flow rate of 1 m3 is 

considered. Generated meshes for this river are 

shown in Figure 2. Three direct stations (A1 

series), 60 degrees (B21 series) and 110 

degrees (B39 series) presented in Table 1, have 

been selected for investigation as samples (Gee 

et al., 1990). 

 

 
Fig. 2. Study area (Gee et al., 1990) 

 
Table 1- Specifications of the study area (Gee et 

al., 1990) 
B39 B21 A1 Criteria 

10 10 10 

Total 

width 

(meters) 

0.9 0.9 1.5 

Channel 

base 

width 

(meters) 

0.15 0.15 0.15 
Channel 

depth 

1:1 1:1 1:1 
Channel 

slope 

1.2 1.2 1.8 

Channel 

top width 

(meters) 

Variable Variable ¼ 
Width 

(meters) 

Discharge Discharge Discharge 
Input 

conditions 

Fixed 

stage 

Fixed 

stage 

Fixed 

stage 

Output 

conditions 

0.01 0.01 0.01 
Manning 

coefficient 

 

3. Results and Discussion  

Results presented that the two-dimensional 

finite element model with simple turbulence is 

able to predict hydraulic parameters such as 

flow rate and height accurately in cross 

sections. This means that even in a three-

dimensional condition with lateral velocity 

near the canal, the model is able to show the 
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momentum transfer between the main canal 

and the floodplain sufficiently. Comparison 

between FEM results and observation data 

(field data) indicates the accuracy and strength 

of FEM in simulation procedure. Figure 3-5 

shows this comparison.

 

 
Fig. 3. Comparison of the FEM hydrograph and the observational data at the station 1 

 

 
Fig. 4. Comparison of the FEM hydrograph and the observational data at the station 2 

 

 
Fig. 5. Comparison of the FEM hydrograph and the observational data at the station 3 

 

Simulation was performed to determine the 

river hydrograph in three locations. A1, B21 

and B39 are three locations. Figure 3 is 

depicted for A1, Figure 4 and figure 5 are for 

B29 and B31 locations, respectively.  

In A1 section, the difference between 

observation and finite element method results 

are quite obvious, this difference exists in the 

whole hydrograph even in the peak of the flow. 

These two graphs are corresponded to each 

other between 40 and 55 hrs. In B21 section, 

(figure 4), the closeness of two graphs is 

happened between 20 and 30 hr, however in 

the rest of times, the difference exists. It should 

be noticed that the difference between two 

graphs in figure 4 is lower than figure 3 and 

finite element is more accurate in this location. 

In B39 location, (figure 5), FEM and 

observation data have a complete 

correspondence to each other between 20 and 

40 hr. This period of time is near to peak of 

flow. Totally, as it can be seen, the 

correspondence of the finite element result and 

observation data are obvious. In the outlet 
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location, there were three calibration datasets 

which each of them has the data of water level, 

flow rate, and peak flow. As a result, only the 

peak point time is going to accurately 

predicted.   

The water level is achieved for three 

different locations. This parameter is achieved 

with two different methods, Manning and 

FEM. Figure 6, 7, and 8 are depicted the results 

of these two methods. 

 

 
Fig. 6. Comparison of observational flow curves with FEM predictions and Manning equation at the Station 

No. 1 

 

 
Fig. 7. Comparison of observation flow curves with FEM predictions and Manning equation at the station 

No. 2 

 

 
Fig. 8. Comparison of observational flow curves with FEM predictions and Manning equation at the station 

No. 3 

 

As it clear, the correspondence of FE water 

level is really high to the Manning water level, 

and this fact shows the performance of FEM in 

order to simulation of water level. However, in 

figure 7 which stands for B21 location, the 

difference of water level in the first values of 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1 1.2

H
(m

)

Q(m3/s)

Manning e.q

2D FE

0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4 0.5

H
(m

)

Q(m3/s)

Manning e.q

2D FE

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2

H
(m

)

Q(m3/s)

Manning e.q

2D FE



100      

    Baazm et al. /Water Harvesting Research, 2022, 5(1):93.101 

 

flow rate is quite high, but this difference is 

decreasing gradually with moving to high flow 

rates. 

 

3.1.Evaluation of the performance of 

FEM 

Mean Error (ME), Mean Absolute Error 

(MAE) and Root Mean Square Error (RMSE) 

were used as criteria for determining the 

performance of the model. Results are 

illustrated in Table 2. 

 
Table 2- Calculation of Mean Error, Mean 

Absolute Error and Root Mean Square Error (m) 

Error criteria 
Station 

3 

Station 

2 

Station 

1 

ME 0.125 0.110 0.195 

MAE 0.198 0.211 0.175 

RMSE 0.211 0.253 0.224 

 

According to the Table (2), the value of the 

root mean square error is in the acceptable 

range, so the method used for simulation is 

efficient and accurate. It should be noted that 

the proposed model in addition to its 

advantageous including, high accuracy and 

low computational cost, it has some limitation 

in domains with irregular geometry. This 

model in the irregular boundaries show some 

drawbacks that may lead to errors. 

 

4. Conclusion 

Using the principle of mass conservation 

and its application to volumetric elements, the 

continuity equation for compressible fluid is 

obtained, which, assuming the volume mass 

constant (ρ = constant), becomes a simple and 

well-known continuity equation. Applying the 

principle of motion size survival to the 

volumetric element also gives the motion size 

equations or Navier-Stokes in three directions. 

Using the principle of energy conservation in a 

simplified case, we arrive at the Bernoulli 

relation. The Bernoulli equation or integration 

of motion size equations in frictionless flow 

(Euler equation) is also achievable, so finding 

all unknowns does not require all three of the 

above equations, and in practice the continuity 

and motion equations (Navier-Stokes 

equations) are usually used. For this purpose, 

the governing equations of shallow water flow 

are first extracted from the basic 

hydrodynamic equations (continuity and 

Navier-Stokes) and the governing assumptions 

and types of boundary conditions are 

described. In the next step, the spatial 

separation of the equations is done by the finite 

element method and based on the Galerkin 

method (one of the weighted residual 

methods), for which the linear and triangular 

isometric parametric elements are used. 

Results showed that the proposed model is able 

to predict accurately the hydraulic parameters 

such as height and flow rate. This is due to the 

closeness of observation data and FDM results. 
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