Bahram, M.E., Pourvaghar, M. J., Mojtahedi, H., & Movahadi, A.R. (2013). The effect of 8 weeks of aerobic exercise training on some of cardiovascular endurance and body composition characteristics of male high school students in Kashan. Journal of Practical Studies of Biosciences in Sport, 2(4), 90-100. [In Persian]
D’Andrea, A., Limongelli, G., Caso, P., Sarubbi, B., Della Pietra, A., Brancaccio, P., & Calabrò, R. (2002). Association between left ventricular structure and cardiac performance during effort in two morphological forms of athlete’s heart. International Journal of Cardiology, 86(2-3), 177-184.
Da Silva, J.N.D., Fernandes, T., Soci, U.P., Monteiro, A.W., Phillips, M.I., De Oliveira, E.M. (2012). Swimming training in rats increases cardiac MicroRNA-126 expression and angiogenesis. Medicine Science in Sports Exercise, 44(8), 1453-62.
de Witte, D., Wijngaarden, L. H., van Houten, V. A., van den Dorpel, M. A., Bruning, T. A., van der Harst, E., ... & Niezen, R.A. (2020). Improvement of cardiac function after Roux-en-Y gastric bypass in morbidly obese patients without cardiac history measured by cardiac MRI. Obesity Surgery, 30(7), 2475-2481.
Desjardins, C. A., & Naya, F. J. (2017). Antagonistic regulation of cell-cycle and differentiation gene programs in neonatal cardiomyocytes by homologous MEF2 transcription factors. Journal of Biological Chemistry, 292(25), 10613-10629.
Fathi, M. (2018). Non change of MEF2C gene expression of rats left ventricle due to endurance activity. Journal of Sabzevar University of Medical Sciences, 24(6),45-51. [In Persian]
Khajehlandi, M., Bolboli, L., Siahkuhian, M., Rami, M., & Tabandeh, M. (2020). The effect of moderate-intensity endurance training onHDAC4 and CaMKII genes expression in myocardium of male rats. Journal of Kashan University of Medical Sciences, 24(4), 357-365. [In Persian]
Khajehlandi, M., Bolboli, L., Siahkohian, M., Rami, M., & Tabandeh, M. (2020). The effect of moderate-intensity endurance training on cortisol levels, MEF-2C and MMP-2 gene expression in male rats myocardiom: interventional and experimental study. Journal of Urmia University of Medical Science, 31(4), 305-315. [In Persian]
Kılıç, M., Ulusoy, Ö., Cırrık, S., Hindistan, I.E., & Gul Özkaya, Y. (2014). Effect of exercise intensity on cerebrospinal fluid interleukin-6 concentration during recovery from exhaustive exercise in rats. Acta physiologica Hungarica, 101(1), 21-31.
Lee, B.A., & Oh, D.J. (2016). The effects of long-term aerobic exercise on cardiac structure, stroke volume of the left ventricle, and cardiac output. Journal of Exercise Rehabilitation, 12(1), 37.
Livak, K.J., & Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402-408.
Luijsterburg, M.S., Dinant, C., Lans, H., Stap, J., Wiernasz, E., Lagerwerf, S., & Dobrucki, J.W. (2009). Heterochromatin protein 1 is recruited to various types of DNA damage. Journal of Cell Biology, 185(4), 577-586.
Medeiros, A., Oliveira, E. M. d., Gianolla, R., Casarini, D. E., Negrão, C., & Brum, P. C. (2004). Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats. Brazilian Journal of Medical and Biological Research, 37(12), 1909-1917.
Mimic-Oka, J., Simic, D.V., & Simic, T.P. (1999). Free radicals in cardiovascular diseases. Journal of Medicin and Biology, 6(1), 11-22.
Moeini, M., Behpoor, N., & Tadibi, V. (2019). The effect of 8 weeks high intensity interval training on the expression of PI3K in the left ventricle and insulin resistance of male Wistar rats with type 2 diabetes. Journal of Practical Studies of Biosciences in Sport, 8(16), 48-58. [In Persian]
Naderi, A., Alaei, H., Sharifi, M.R., & Hoseini, M. (2008). The comparison between effect of short-term and mid-term exercise on the enthusiasm of the male rats to self-administer morphine. Iranian Journal of Basic Medical Sciences, 9(4), 272-280. [In Persian]
Obad, A., Palada, I., Valic, Z., Ivančev, V., Baković, D., Wisløff, U., Dujić, Ž. (2007).The effects of acute oral antioxidants on diving‐induced alterations in human cardiovascular function. The Journal of Physiology, 578(3), 859-870.
Pelliccia, A., Maron, M.S., & Maron, B.J. (2012). Assessment of left ventricular hypertrophy in a trained athlete: differential diagnosis of physiologic athlete’s heart from pathologic hypertrophy. Progress in Cardiovascular Diseases, 54(5), 387-396.
Potthoff, M.J., & Olson, E.N. (2007). MEF2: a central regulator of diverse developmental programs. Development, 134(23), 4131-4140.
Richter, E.A., & Ruderman, N.B. (2009). AMPK and the biochemistry of exercise: implications for human health and disease. Biochemical Journal, 418(2), 261-275.
Schneider, C.D., & Oliveira, A.R.D. (2004). Oxygen free radicals and exercise: mechanisms of synthesis and adaptation to the physical training. Revista Brasileira de Medicinado Esporte, 10(4), 308-313.
Seo, J.S., Lee, S.Y., Won, K.J., Kim, D.J., Sohn, D.S., Yang, K.M., Kim, H.D. (2000). Relationship between normal heart size and body indices in Korean. Journal of Korean Medical Science, 15(6), 641-646.
Taye, A., Abouzied, M.M., & Mohafez, O.M. (2013). Tempol ameliorates cardiac fibrosis in streptozotocin-induced diabetic rats: role of oxidative stress in diabetic cardiomyopathy. Journal of The German Society of Experimental and Clinical Pharmacology and Toxicology (DGPT), 386(12), 1071-1080.
Vega, R.B., Konhilas, J.P., Kelly, D.P., & Leinwand, L.A. (2017). Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metabolism, 25(5), 1012-1026.
Wang, Z., Qin, G., & Zhao, T.C. (2014). HDAC4: mechanism of regulation and biological functions. Epigenomics,6(1), 139-150.
Wei, J., Joshi, S., Speransky, S., Crowley, C., Jayathilaka, N., Lei, X., ... & Bishopric, N. H. (2017). Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface. JCI Insight, 2(17), e91068.
West, J.B. (1990). Best and Taylor’s physiological basis of medical practice. Williams & Wilkins publication, 1990.