Acikgoz, O., Aksu, I., Topcu, A., & Kayatekin, B.M. (2006). Acute exhaustive exercise does not alter lipid peroxidation levels and antioxidant enzyme activities in rat hippocampus, prefrontal cortex and striatum. Neuroscience Letters, 406(1-2), 148-151.
Allison, D.W., Gelfand, V.I., Spector, I., & Craig, A.M. (1998). Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. The Journal of Neuroscience, 18(7), 2423-2436.
Arikkath, J., & Reichardt, L. (2008). Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity. Trends in Neurosciences, 31(9), 487-494.
Azimidokht, S.M.A., Gharakhanlou, R., Naghdi, N., Khodadadi, D., & Zarezadehmehrizi, A.A. (2019). The effect of the treadmill running on genes expression of the PGC-1α, FNDC5 and BDNF in hippocampus of male rats. Journal Practical of Biosciences in Sport, 7(14), 91-101. [In Persian]
Ballatore, C., Lee, V. M.-Y., & Trojanowski, J.Q. (2007). Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nature Reviews Neuroscience, 8(9), 663-673.
Benitez-King, G., Ramirez-Rodriguez, G., Ortiz, L., & Meza, I. (2004). The neuronal cytoskeleton as a potential therapeutical target in neurodegenerative diseases and schizophrenia. Current Drug Targets-CNS & Neurological Disorders, 3(6), 515-533.
Chae, C., Jung, S., An, S., Park, B., Wang, S., Cho, I., ... & Kim, H. (2009). Treadmill exercise improves cognitive function and facilitates nerve growth factor signaling by activating mitogen-activated protein kinase/extracellular signal-regulated kinase1/2 in the streptozotocin-induced diabetic rat hippocampus. Neuroscience, 231, 445-445.
Cox, P.R., Fowler, V., Xu, B., Sweatt, J.D., Paylor, R., & Zoghbi, H.Y. (2003). Mice lacking Tropomodulin-2 show enhanced long-term potentiation, hyperactivity, and deficits in learning and memory. Molecular and Cellular Neuroscience, 23(1), 1-12.
Cox, P.R., & Zoghbi, H.Y. (2000). Sequencing, expression analysis, and mapping of three unique human tropomodulin genes and their mouse orthologs. Genomics, 63(1), 97-107.
Devi, S.A., & Kiran, T.R. (2004). Regional responses in antioxidant system to exercise training and dietary vitamin E in aging rat brain. Neurobiology of Aging, 25(4), 501-508.
Erickson, K.I., Voss, M.W., Prakash, R.S., Basak, C., Szabo, A., Chaddock, L., ... & White, S.M. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108(7), 3017-3022.
Fan, B., Jabeen, R., Bo, B., Guo, C., Han, M., Zhang, H., ... & Wei, J. (2020). What and how can physical activity prevention function on Parkinson’s disease? Oxidative Medicine and Cellular Longevity, 2020.
Fath, T., Fischer, R.S., Dehmelt, L., Halpain, S., & Fowler, V.M. (2011). Tropomodulins are negative regulators of neurite outgrowth. European Journal of Cell Biology, 90(4), 291-300.
Gligoroska, J.P., & Manchevska, S. (2012). The effect of physical activity on cognition–physiological mechanisms. Materia socio-medica, 24(3), 198.
Hötting, K., & Röder, B. (2013). Beneficial effects of physical exercise on neuroplasticity and cognition. Neuroscience & Biobehavioral Reviews, 37(9), 2243-2257.
Jahangiri, Z., Gholamnezhad, Z., & Hosseini, M. (2019). The effects of exercise on hippocampal inflammatory cytokine levels, brain oxidative stress markers and memory impairments induced by lipopolysaccharide in rats. Metabolic Brain Disease, 34(4), 1157-1169.
Kazemi, A. (2019). The effect of continuous endurance training on the level of TMOD2 protein in the spinal cord of Wistar male rats with diabetic neuropathy. Community Health Journal, 12(4), 60-72. [In Persian]
Keller, J.N., & Mattson, M.P. (1998). Roles of lipid peroxidation in modulation of cellular signaling pathways, cell dysfunction, and death in the nervous system. Reviews in the Neurosciences, 9(2), 105-116.
Kuipers, S.D., & Bramham, C.R. (2006). Brain-derived neurotrophic factor mechanisms and function in adult synaptic plasticity: new insights and implications for therapy. Current Opinion in Drug Discovery and Development, 9(5), 580.
Lambert, T.J., Fernandez, S.M., & Frick, K.M. (2005). Different types of environmental enrichment have discrepant effects on spatial memory and synaptophysin levels in female mice. Neurobiology of Learning and Memory, 83(3), 206-216.
Lariviere, R.C., & Julien, J.P. (2004). Functions of intermediate filaments in neuronal development and disease. Journal of Neurobiology, 58(1), 131-148.
Leite, H.R., Mourão, F.A., Drumond, L.E., Ferreira‐Vieira, T.H., Bernardes, D., Silva, J.F., ... & Carvalho-Tavares, J. (2012). Swim training attenuates oxidative damage and promotes neuroprotection in cerebral cortical slices submitted to oxygen glucose deprivation. Journal of Neurochemistry, 123(2), 317-324.
Lekhi, C., Gupta, P.H., & Singh, B. (2007). Influence of exercise on oxidant stress products in elite Indian cyclists. British Journal of Sports Medicine, 41(10), 691-693.
Loprinzi, P. (2019). The effects of exercise on long-term potentiation: A candidate mechanism of the exercise-memory relationship. OBM Neurobiology, 3(2), 1-1.
Mojtahedi, S., Tabrizi, A., & Hosseini, S.E. (2021). Effect of running time on cell proliferation in the hippocampus of male adult rats. Journal Practical of Biosciences in Sport, 9(20), 8-16. [In Persian]
Omotade, O.F., Rui, Y., Lei, W., Yu, K., Hartzell, H.C., Fowler, V.M., & Zheng, J.Q. (2018). Tropomodulin isoform-specific regulation of dendrite development and synapse formation. Journal of Neuroscience, 38(48), 10271-10285.
Parise, G., Phillips, S.M., Kaczor, J.J., & Tarnopolsky, M.A. (2005). Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radical Biology and Medicine, 39(2), 289-295.
Patten, A.R., Sickmann, H., Hryciw, B.N., Kucharsky, T., Parton, R., Kernick, A., & Christie, B.R. (2013). Long-term exercise is needed to enhance synaptic plasticity in the hippocampus. Learning & Memory, 20(11), 642-647.
Petzinger, G.M., Fisher, B.E., McEwen, S., Beeler, J.A., Walsh, J.P., & Jakowec, M.W. (2013). Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. The Lancet Neurology, 12(7), 716-726.
Pinho, R.A., Andrades, M.E., Oliveira, M.R., Pirola, A.C., Zago, M.S., Silveira, P.C., ... & Moreira, J.C.F. (2006). Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise. Cell Biology International, 30(10), 848-853.
Radak, Z., Toldy, A., Szabo, Z., Siamilis, S., Nyakas, C., Silye, G., ... & Goto, S. (2006). The effects of training and detraining on memory, neurotrophins and oxidative stress markers in rat brain. Neurochemistry International, 49(4), 387-392.
Rahmati, M., & Kazemi, A. (2019). Various exercise intensities differentially regulate GAP-43 and CAP-1 expression in the rat hippocampus. Gene, 692, 185-194.
Rahmati, M., Shariatzadeh, M., Kazemi, A., & Taherabadi, S.J. (2019). High-intensity interval training increasing ADP-ribosylation factor 6 and Cytochrome C in visceral adipose tissue of male Wistar rats. Obesity Medicine, 14, 100089.
Rahmati, M., Keshvari, M., Mirnasouri, R,. & Chehelcheraghi, F. (2021). Exercise and Urtica dioica extract ameliorate hippocampal insulin signaling, oxidative stress, neuroinflammation, and cognitive function in STZ-induced diabetic rats. Biomedicine & Pharmacotherapy, 139, 111577.
Rao, S.M., & Sarkar, A. (2017). Beneficial effects of exercise on cognitive decline in old age. Indian Journal of Gerontology, 31(4), 423-429.
Rissardi, G.D.G.L., Cipullo, J.P., Moreira, G.C., Ciorlia, L.A.S., Cesarino, C.B., Giollo, L.T., ... & Vilela-Martin, J.F. (2018). Prevalence of physical inactivity and its effects on blood pressure and metabolic parameters in a Brazilian urban population. International Journal of Cardiovascular Sciences, 31, 594-602.
Salehi, I., Farajnia, S., Mohammadi, M., & Sabouri, G.M. (2010). The pattern of brain-derived neurotrophic factor gene expression in the hippocampus of diabetic rats. Irainian Journal of Basic Medical Sciences,13(3), 146-153. [In Persian]
Scopel, D., Fochesatto, C., Cimarosti, H., Rabbo, M., Belló-Klein, A., Salbego, C., ... & Siqueira, I.R. (2006). Exercise intensity influences cell injury in rat hippocampal slices exposed to oxygen and glucose deprivation. Brain Research Bulletin, 71(1-3), 155-159.
Seifert, T., Brassard, P., Wissenberg, M., Rasmussen, P., Nordby, P., Stallknecht, B., ... & Secher, N.H. (2010). Endurance training enhances BDNF release from the human brain. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 298(2), 372-377.
Soleimani, H., Talebi-Garakani, E., & Safarzade, A. (2018). The effect of endurance training and whey protein consumption on levels of antioxidant enzymes and oxidative stress in the heart muscle of rats fed a high-fat diet. Iranian Journal of Nutrition Sciences & Food Technology, 13(2), 1-10. [In Persian]
Sussman, M.A., Sakhi, S., Tocco, G., Najm, I., Baudry, M., Kedes, L., & Schreiber, S.S. (1994). Neural tropomodulin: developmental expression and effect of seizure activity. Developmental Brain Research, 80(1-2), 45-53.
Taherabadi, S.J., Rahmati, M., Mirnasuri, R., & Kazemi, A. (2019). Effect of exercise training on Tropomodulin-2 gene expression in cerebellum of diabetic rats. Iranian Journal of Diabetes and Obesity, 11(1), 28-37. [In Persian]
Thomason, E.J., Escalante, M., Osterhout, D.J., & Fuss, B. (2020). The oligodendrocyte growth cone and its actin cytoskeleton: A fundamental element for progenitor cell migration and CNS myelination. Glia, 68(7), 1329-1346.
Vecchio, L.M., Meng, Y., Xhima, K., Lipsman, N., Hamani, C., & Aubert, I. (2018). The neuroprotective effects of exercise: maintaining a healthy brain throughout aging. Brain Plasticity, 4(1), 17-52.
Vizzi, L., Padua, E., D’Amico, A.G., Tancredi, V., D’Arcangelo, G., Cariati, I., ... & Montorsi, M. (2020). Beneficial effects of physical activity on subjects with neurodegenerative disease. Journal of Functional Morphology and Kinesiology, 5(4), 94.
Yamashiro, S., Speicher, K.D., Speicher, D.W., & Fowler, V.M. (2010). Mammalian tropomodulins nucleate actin polymerization via their actin monomer binding and filament pointed end-capping activities. Journal of Biological Chemistry, 285(43), 33265-33280.
Yang, J., Czech, T., Felizardo, M., Baumgartner, C., & Lubec, G. (2006). Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy. Amino Acids, 30(4), 477-493.
Zhao, J.L., Jiang, W.T., Wang, X., Cai, Z.D., Liu, Z.H., & Liu, G.R. (2020). Exercise, brain plasticity, and depression. CNS Neuroscience & Therapeutics, 26(9), 885-895.