
تعداد نشریات | 21 |
تعداد شمارهها | 301 |
تعداد مقالات | 3,173 |
تعداد مشاهده مقاله | 3,211,769 |
تعداد دریافت فایل اصل مقاله | 2,380,293 |
بررسی واکنشهای فیزیولوژیک دو گونه گیاه داروئی مرزنجوش به محلولپاشی کیتوزان تحت شرایط تنش کمآبی | ||
تنشهای محیطی در علوم زراعی | ||
مقاله 15، دوره 15، شماره 1، فروردین 1401، صفحه 185-197 اصل مقاله (426.03 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/escs.2020.3603.1881 | ||
نویسندگان | ||
لیلا آقایی دیزج1؛ حمید محمدی* 2؛ احمد آقایی3 | ||
1دانش آموخته اگروتکنولوژی، فیزیولوژی گیاهان زراعی، دانشکده کشاورزی، دانشگاه شهید مدنی آذربایجان | ||
2دانشیار دانشکده کشاورزی، دانشگاه شهید مدنی آذربایجان | ||
3استادیار گروه زیست شناسی، دانشکده علوم پایه دانشگاه مراغه | ||
چکیده | ||
مرزنجوش یکی از مهمترین گیاهان دارویی در جهان است که به دلیل اهمیت اقتصادی، کمیت وکیفیت اسانس بسیار شناخته شده است. تنش خشکی جزو تنشهای غیرزیستی است که در صورت بروز، موجب خسارتهای متعدد به گیاهان میشود. کیتوزان به عنوان الیستور زیستی، با افزایش فعالیت دفاعی گیاه از بروز خسارتهای شدید به گیاهان در شرایط تنش جلوگیری میکند. بدین منظور جهت ارزیابی اثر القاکننده کیتوزان و تنش کم آبی بر رشد و پارامترهای فیزیولوژیک مرزنجوش، آزمایشی در گلخانه دانشگاه شهید مدنی آذربایجان- ایران به صورت فاکتوریل در قالب طرح بلوک کامل تصادفی در سه تکرار انجام شد. عاملهای مورد بررسی شامل محلولپاشی کیتوزان در سه سطح (صفر، 250 و 500 میلیگرم بر لیتر)، عامل دوم گونههای مرزنجوش (Origanum majorana وOriganum vulgare) و عامل سوم سطوح تنش (تنش کم آبی و عدم تنش) بودند. زمان اعمال تنش کم آبی و تیمار با کیتوزان سه هفته قبل از گلدهی کامل بود. نتایج نشان داد که تنش کم آبی موجب کاهش درصد ماده خشک بوته، صفات محتوای رطوبت نسبی برگ، محتوای کلروفیل a، کلروفیل b، کلروفیل کل و کاروتنوئید شد، در حالیکه محتوای هیدروژن پراکسید (H2O2)، مالوندیآلدهید (MDA)، پرولین و بازده اسانس را افزایش داد. محلولپاشی کیتوزان در شرایط تنش کم آبی باعث افزایش وزن خشک شاخساره، کلروفیلa، کلروفیل کل، کارتنوئید، محتوای رطوبت نسبی برگ، پرولین و بازده اسانس شد. نتایج نشان داد که استفاده از کیتوزان به عنوان الیسیتور زیستی، با توجه به مهندسی متابولیت میتواند اثرات سوء تنش کم آبی را در گیاه مرزنجوش به عنوان یک گیاه داروئی کاهش دهد. | ||
کلیدواژهها | ||
پارامترهای فیزیولوژیک؛ تنش کم آبی؛ کیتوزان؛ گونه مرزنجوش | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Arnon, D.I., 1949. Copper enzymes in chloroplasts, polyphenol oxidase in Beta vulgaris. Plant Physiology. 24, 1- 15. Ashraf, M., Foolad, M.R., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany. 59, 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006 Azizi, A., Yan, F., Honeermeri, B., 2008. Herbag Yield, essentioal oil content and composition of three oregano (Origanum vulgare L.) population as affected by soil moisture regimes and nitrogen supply. Industrial Crops and Products. 29, 554-561. https://doi.org/10.1016/j.indcrop.2008.11.001 Barrs, H., Weatherley, P., 1962. A re- examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences. 15, 413-428. https://doi.org/10.1071/BI9620413 Bates, L.S., Waldern, R.P., Tear, I.D., 1973. Rapid determination of free proline for water stress studies. Plant and Soil. 39, 205-207. https://doi.org/10.1007/BF00018060 Bittelli, M., Flury, M., Campbell, G.S., Nichols, EJ., 2001. Reduction of transpiration through foliar application of chitosan. Agricultural and Forest Meteorology. 107, 167–175. https://doi.org/10.1016/S0168-923(00)00242-2 Breusegem, F.V., James, F., Dat, D., Inze, D., 2001. The role of active oxygen species in plant signal transduction. Plant Science. 161, 423-431. https://doi.org/10.1016/S0168-9452(01)00452-6 Brithish Pharmacopeia, 1988. Brithish Pharmacopeia. HMSO, London A, 138. Corell, M., Garcia, M.C., Contreras, J.I., Segura, M.L., Cermeno, P., 2012. Effect of water stress on Salvia officinalis L. Bioproductivity and its bioelement concentrations. Communications in Soil Science and Plant Analysis. 43, 419-425. https://doi.org/10.1080/00103624.2012.641811 De Vos, C., Schat, H., De Waal, M., Vooijs, R., Ernst, W., 1991. Increased to copper-induced damage of the root plasma membrane in copper tolerant Silene cucubalus. Plant Physiology. 82, 523-528. https://doi.org/10.1111/j.1399-3054.1991.tb02942.x Debnath, M., Pandey, M., Bisen, P.S., 2011. An omics approach to understand the plant abiotic stress. Omics. 15, 739–762. https://doi.org/10.1089/omi.2010.0146 Dunford, N.T., Vazquez, R.S., 2005. Effect of water stress on plant growth and thymol and carvacrol concentrations in Mexican oregano grown under controlled conditions. Journal of Applied Horticulture. 7, 20-22. Emami Bistgani, Z., Siadat, S.A., Bakhshandeh, A., Ghasemi Pirbalouti, A., Hashemi, M., 2017. Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. The Crop Journal. 5, 407-415. https://doi.org/10.1016/j.cj.2017.04.003 Harish Prashanth, K.V., Dharmesh, S.M., Jagannatha, R., Tharanathan, R.N., 2007. Free radical-induced chitosan depolymerized products protect calf thymus DNA from oxidative damage. Carbohydrat. 342, 190-195. https://doi.org/10.1016/j.carres.2006.11.010 Herms, D.A, Mattson, W.J., 1992. The dilemma of plants: to grow or defend. Quarterly Review of Biology. 67, 283–335. Heng, Y., Xavier, C., Lars, F., Christensen, P., Kai, G., 2012. Chitosan oligosaccharides promote the content of polyphenols in Greek Oregano (Origanum vulgare ssp. hirtum). Journal of Agricultural and Food Chemistry. 60, 136-143. https://doi.org/10.1021/jf204376j Hidangmayum, A., Dwivedi, P., 2018. Plant responses to Trichoderma spp. and their tolerance to abiotic stresses: a review. Journal of Pharmacognosy and Phytochemistry. 7(1), 758–766. Hidangmayum, A., Dwivedi, P., Katiyar, D., Hemantaranjan, A., 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants. 25, 313–326. https://doi.org/10.1007/s12298-018-0633-1. Hong, Z., Lakkineni, K., Zhang, Z., Verma, D.P.S., 2000. Removal of feedback inhibition of pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology. 122, 1129–1136. https://doi.org/10.1104/pp.122.4.1129 Jaafar, H.Z.E, Ibrahim, M.H., Fakri, N.F.M., 2012. Impact of soil field water capacity on secondary metabolites, phenylalanine ammonia-lyase (PAL), maliondialdehyde (MDA) and photosynthetic responses of Malaysian Kacip Fatimah (Labisia pumila Benth). Molecules, 17, 7305–7322. https://doi.org/10.3390/molecules17067305 Jiao, Z., Li, Y., Li, J., Xu, X., Li, H., Lu, D., Wang, J., 2012. Effects of exogenous chitosan on physiological characteristics of potato seedlings under drought stress and rehydration. Potato Research. 55, 293–301. https://doi.org/10.1007/s11540-012-9223-8 Kamari, A., Pulford, I.D., Hargreaves, J.S., 2012. Metal accumulation in Lolium perenne and Brassica napus as affected by application of chitosans. International Journal of Phytoremediation. 14, 894–907. https://doi.org/10.1080/15226514.2011 Khan, M.A.M., Ulrichs, C., Mewis, I., 2011. Water stress alters aphid-induced glucosinolate response in Brassica oleracea var. italica differently. Chemoecology. 21, 235–242. https://doi.org/10.1007/s00049-011-0084-4 Kowalski, B., Jimenez, F., Herrera, L., Agramonet Penalver, D. 2006. Application of soluble chitosan in vitro and in the greenhouse to increase yield and seed quality of potato minitubers. Potato Research. 49, 167-176. https://doi.org/10.1007/s11540-006-9015-0 Lichtenthaler, H.K., Wellburn, A.R., 1983. Determination of total carotenoids and chlorophylls a and b in leaf extracts in different solvents. Biochemical Society Transactions. 11, 591–592. https://doi.org/10.1042/bst0110591 Matysik, J., Bhalu, B.A., Mohanty, P., Bohrweg, N., 2002. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science. 82, 525–532. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science. 7, 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9 Morshedloo, M.R., Craker, L.E., Salami, A., Nazeri, V., Sang, H, Maggi, F., 2017. Effect of prolonged water stress on essential oil content, compositions and gene expression patterns of mono and sesquiterpene synthesis in two oregano (Origanum vulgare L.) subspecies. Plant Physiology and Biochemistry. 111, 119-128. https://doi.org/10.1016/j.plaphy.2016.11.023 Naeemi, M., Dehghani, M.S., Ghilamali Pour Alamdari, E., Jabbari, H., 2019. Effects of different irrigation regimes and foliar application of chitosan on qualitative and physiological characteristics of German chamomile (Matricaria chamomilla L.). Environmental Stresses in Crop Sciences. 12, 471-480. http://doi.org/10.22077/escs.2018.1374.1292. [In Persian with English summary]. Pongprayoon, W., Roytrakul, S., Pichayangkura, R., Chadchawan, S., 2013. The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.). Plant Growth Regulation. 70, 159–173. https://doi.org/10.1007/s10725-013-9789-4 Possingham, J.V., 1980. Plastid replication and development in the life cycle of higher plants. Annual Review of Plant Physiology. 31, 113–129. Selmar, D., Kleinwachter, M., 2013. Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Industrial Crops and Products. 42, 558–566. https://doi.org/10.1016/j.indcrop.2012.06.020 Kintzios, S.E., 2002. Oregano: The genera Origanum and Lippia (1st ed.), CRC Press. https://doi.org/10.1201/b12591 Taheri, F., Damardeh, M., Salari, M., Bagheri, R., 2017. Evaluate the effect of chitosan on the activities of antioxidant enzymes in Ajwain (Carum capticum L.) under drought stress. Iranian Journal of Horticultural Science. 48, 575-584. [In Persian with English summary]. Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants Protective role of exogenous polyamines. Plant Science. 151, 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1 Wang, W.X., Vinocur, B., Shoseyov, O., Altman, A., 2001. Biotechnology of plant osmotic stress tolerance. Physiological and molecular considerations. Acta Horticulturae. 560, 285–292.https://doi.org/10.17660/ActaHortic.2001.560.54 Watanabe, S., Kojima, K., Ide, Y., Satohiko Sasaki, S., 2000. Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell Tissue and Organ Culture. 63, 199-206. https://doi.org/10.1023/A:1010619503680 Xu, Q.J., Nian, Y.G., Jin, X.C., Yan, C.Z., Liu, J., Jiang, G.M., 2007. Effects of chitosan on growth of an aquatic plant (Hydrilla verticillata) in polluted waters with different chemical oxygen demands. Journal of Environmental Sciences. 19, 217–222. https://doi.org/10.1016/S1001-0742(07)60035-7 Yang, F., Hu, J., Li, J., Wu, X., Qian, Y., 2009. Chitosan enhances leaf membrane stability and antioxidant enzyme activities in apple seedlings under drought stress. Plant Growth Regulation. 58, 131–136. https://doi.org/10.1007/s10725-009-9361-4 | ||
آمار تعداد مشاهده مقاله: 802 تعداد دریافت فایل اصل مقاله: 598 |