Bodine, S.C., Latres, E., Baumhueter, S., Lai, VK-M., Nunez, L., Clarke, B.A., … & Pan, Z.Q. (2001). Identification of ubiquitin ligases required for skeletal muscle atrophy. Science, 294(5547), 1704-8.
Burd, N.A., Gorissen, S.H., & van Loon, L.J. (2013). Anabolic resistance of muscle protein synthesis with aging. Exercise and Sport Sciences Reviews, 41(3), 169-73.
Cartee, G.D., Hepple, R.T., Bamman, M.M., & Zierath, J.R.( 2016). Exercise promotes healthy aging of skeletal muscle. Cell Metabolism, 23(6), 1034-47.
de Cássia Marqueti, R., Almeida, J.A., Nakagaki, W.R., Guzzoni, V., Boghi, F., Renner, A., … & Selistre-de-Araújo, H.S. (2017). Resistance training minimizes the biomechanical effects of aging in three different rat tendons. Journal of Biomechanics, 53, 29-35.
Ebert, S.M., Al-Zougbi, A., Bodine, S.C., & Adams, C.M. (2019). Skeletal muscle atrophy: discovery of mechanisms and potential therapies. Physiology, 34(4), 232-9.
Furlanetto, J.R.R., de Paula Souza, A., de Oliveira, A.A., Nunes, P.R.P., Michelin, M.A., Chica, J.E.L., … & Orsatti, F.L. (2016). Acute resistance exercise reduces increased gene expression in muscle atrophy of ovariectomised arthritic rats. Przeglad Menopauzalny Menopause Review, 15(4), 193-201.
Ghadimi Ilkhanlar, H., Noorshahi, M., Gharakhanlou, R., & Khodagholi, F. (2015). The effect of 8 weeks of resistance training on the amount of neuroterpsin in fast-twitch muscles and slow contraction of elderly wistar rats. Journal of Applied Exercise Physiology (JAEP), 20(10), 129-138. [In Persion]
Gomes, A.V., Waddell, D.S., Siu, R., Stein, M., Dewey, S., Furlow, J.D., & Bodine, S.C. (2012). Upregulation of proteasome activity in muscle RING finger 1-null mice following denervation. The FASEB Journal, 26(7), 2986-2999.
Khoramshahi, S.H., Kordi, M.R., Delfan, M., Gaeini, A.A., & Safa, M. (2017). Effect of five weeks of high-Intensity Interval training on the expression of miR-23a and Atrogin-1 in Gastrocnemius muscles of diabetic male rats. Iranian Journal of Endocrinology and Metabolism, 18(5), 361-367. [In Persion]
Krug, A.L., Macedo, A.G., Zago, A.S., Rush, J.W., Santos, C.F., & Amaral, S.L. (2016). High‐intensity resistance training attenuates dexamethasone‐induced muscle atrophy. Muscle & Nerve, 53(5), 779-788.
Lavin, K.M., Roberts, B.M., Fry, C.S., Moro, T., Rasmussen, B.B., & Bamman, M.M. (2019). The importance of resistance exercise training to combat neuromuscular aging. Physiology, 4(2), 112-22.
Lexell, J., Taylor, C.C., & Sjöström, M. (1988). What is the cause of the ageing atrophy?: Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15-to 83-year-old men. Journal of the Neurological Sciences, 84(2-3), 275-294.
Li, Y.P., Chen, Y., John, J., Moylan, J., Jin, B., Mann, D.L., & Reid, M.B. (2005). TNF‐α acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. The FASEB Journal, 19(3), 362-370.
Lin, Z., Murtaza, I., Wang, K., Jiao, J., Gao, J., & Li, P.F. (2009). miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proceedings of the National Academy of Sciences, 106(29), 12103-12108.
Macedo, A.G., Krug, A.L., Herrera, N.A., Zago, A.S., Rush, J.W., & Amaral, S.L. (2014). Low-intensity resistance training attenuates dexamethasone-induced atrophy in the flexor hallucis longus muscle. The Journal of Steroid Biochemistry and Molecular Biology, 143, 357-364.
Miljkovic, N., Lim, J-Y., Miljkovic, I., & Frontera, W.R. ( 2015). Aging of skeletal muscle fibers. Annals of Rehabilitation Medicine, 39(2), 155-162.
Moradi, Y., Zehsaz, F., & Nourazar, M.A. ( 2020). Concurrent exercise training and MuRF-l and Atrogin-1 gene expression in the vastus lateralis muscle of male Wistar rats. Apunts Sports Medicine, 55(205), 21-7.
Moriscot, A.S., Baptista, I.L., Bogomolovas, J., Witt, C., Hirner, S., Granzier, H., & Labeit, S. (2010). MuRF1 is a muscle fiber-type II associated factor and together with MuRF2 regulates type-II fiber trophicity and maintenance. Journal of Structural Biology,170(2), 344-53.
Moro, T., Brightwell, C.R., Volpi, E., Rasmussen, B.B., & Fry, C.S. (2020). Resistance exercise training promotes fiber type-specific myonuclear adaptations in older adults. Journal of Applied Physiology, 128(4), 795-804.
Narici, M.V., & Maffulli, N. (2010). Sarcopenia: characteristics, mechanisms and functional significance. British Medical Bulletin, 95(1), 139-59.
Perry, B.D., Caldow, M.K., Brennan-Speranza, T.C., Sbaraglia, M., Jerums, G., Garnham, A., … & Price, S.R. (2016). Muscle atrophy in patients with Type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise. Exercise Immunology Review, 22, 94.
Reed, S.A., Sandesara, P.B., Senf, S.M., & Judge, A.R. (2012). Inhibition of Foxo transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. The FASEB Journal, 26(3), 987-1000.
Ribeiro, M.B.T., Guzzoni, V., Hord, J.M., Lopes, G.N., de Cássia Marqueti, R., de Andrade, R.V., … & Durigan, J.L. (2017). Resistance training regulates gene expression of molecules associated with intramyocellular lipids, glucose signaling and fiber size in old rats. Scientific Reports, 7(1), 1-13.
Singulani, M.P., Stringhetta-Garcia, C.T., Santos, L.F., Morais, S.R.L., Louzada, M.J.Q., Oliveira, S.H.P., … & Dornelles, R.C. (2017). Effects of strength training on osteogenic differentiation and bone strength in aging female Wistar rats. Scientific Reports, 7, 42878.
Tanaka, S., Obatake, T., Hoshino, K., & Nakagawa, T. ( 2015) Influence of exercise intensity on atrophied quadriceps muscle in the rat. Journal of Physical Therapy Science, 27(11), 3445-50.
Tayebi, S.M., Siahkouhian, M., Keshavarz, M., Mahdian, R., Shamsi, M.M., & Shahbazi, S. (2019). The effects of high intensity interval training on Mir-23a expression and related factors involved in muscular atrophy of aged rats. International Journal of Applied Exercise Physiology, 8(1), 170-176.
Tews, D.S. (2002). Apoptosis and muscle fibre loss in neuromuscular disorders. Neuromuscular Disorders, 12(7-8), 613-622.
Wang, Y., & Pessin, J.E. (2013). Mechanisms for fiber-type specificity of skeletal muscle atrophy. Current Opinion in Clinical Nutrition and Metabolic Care,16(3), 243.
Wang, X.H. (2013). MicroRNA in myogenesis and muscle atrophy. Current Opinion in Clinical Nutrition and Metabolic Care, 16(3), 258.
Wada, S., Kato, Y., Okutsu, M., Miyaki, S., Suzuki, K., Yan, Z., Schiaffino, S., Asahara, H., Ushida, T., & Akimoto, T. (2011). Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. Journal of Biological Chemistry, 286(44), 38456-65.