Abel, E.D., & Doenst, T. (2011). Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy. Cardiovascular Research, 90(2), 234-242.
Ahuja, S., Kohli, S., Krishnan, S., Dogra, D., Sharma, D., & Rani, V. (2011). Curcumin: A potential therapeutic polyphenol, prevents noradrenaline-induced hypertrophy in rat cardiac myocytes. The Journal of Pharmacy and Pharmacology, 63(12), 1604-1612.
Alihemmati, A., Ebadi, F., Moghadaszadeh, M., Asadi, M., Zare, P., & Badalzadeh, R. (2019). Effects of high-intensity interval training on the expression of microRNA-499 and pro-and anti-apoptotic genes in doxorubicin-cardiotoxicity in rats. Journal of Electrocardiology, 55, 9-15.
Bang, C., Batkai, S., Dangwal, S., Gupta, S.K., Foinquinos, A., Holzmann, A., … & Zeug, A. (2014). Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. The Journal of Clinical Investigation, 124(5), 2136-2146.
Biswas, J., Roy, S., Mukherjee, S., Sinha, D., & Roy, M. (2010). Indian spice curcumin may be an effective strategy to combat the genotoxicity of arsenic in Swiss albino mice. Asian Pacific Journal of Cancer Prevention, 11(1), 239-47.
Boarescu, P.M., Chirilă, I., Bulboacă, A.E., Bocșan, I.C., Pop, R.M., Gheban, D., & Bolboacă, S.D. (2019). Effects of curcumin nanoparticles in isoproterenol-induced myocardial infarction. Oxidative Medicine and Cellular Longevity, 2019, 7847142.
Bulku, E., Stohs, S.J., Cicero, L., Brooks, T., Halley, H., & Ray, S.D. (2012). Curcumin exposure modulates multiple pro-apoptotic and anti-apoptotic signaling pathways to antagonize acetaminophen-induced toxicity. Current Neurovascular Research, 9(1), 58-71.
Cheng, C., Wang, Q., You, W., Chen, M., & Xia, J. (2014). MRNAs as biomarkers of myocardial infarction: a meta-analysis. PloS One, 9(2), e88566.
Chistiakov, D.A., Orekhov, A.N., & Bobryshev, Y.V. (2016). Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). Journal of Molecular and Cellular Cardiology, 94, 107-121.
Danowski, N., Manthey, I., Jakob, H.G., Siffert, W., Peters, J., & Frey, U.H. (2013). Decreased expression of miR-133a but not of miR-1 is associated with signs of heart failure in patients undergoing coronary bypass surgery. Cardiology, 125(2), 125-130.
Delfan, M., Kordi, M.R., Ravasi, A.A., Safa, M., Nasli Esfahani, E., & Rambod, K. (2021). The effect of high intensity interval training and continuous endurance training on gene expression of mir-1 and IGF-1 in cardiomyocyte of diabetic male rats. Journal of Sport Biosciences, 13(1), 1-13. [In Persian]
Duan, W., Yang, Y., Yan, J., Yu, S., Liu, J., Zhou, J., ... & Yi, D. (2012). The effects of curcumin post-treatment against myocardial ischemia and reperfusion by activation of the JAK2/STAT3 signaling pathway. Basic Rresearch in Cardiology, 107(3), 263.
Ellison, G.M., Waring, C.D., Vicinanza, C., & Torella, D. (2012). Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart, 98(1), 5-10.
Fathi, M., Gharakhanlou, R., & Rezaei, R. (2020). The changes of heart miR-1 and miR-133 expressions following physiological hypertrophy due to endurance training. Cell Journal, 22(Suppl 1), 133-140.
Ghajari, H., Hosseini, S.A., & Farsi, S. (2019). The effect of endurance training along with cadmium consumption on Bcl-2 and Bax gene expressions in heart tissue of rats. Annals of Military and Health Sciences Research, 17(1), e86795.
Ghorbani, P., Kordi, M.R., Gaeini, A., Noori, R., & Karbalaeifar, S. (2018). Effect of high intensity interval training on miR-1, miR133-a gene expression in rats with myocardial infarction. Sport Physiology, 10(37), 87-98. [In Persian]
Guiraud, T., Nigam, A., Gremeaux, V., Meyer, P., Juneau, M., & Bosquet, L. (2012). High-intensity iterval training in cardiac rehabilitation. Sports Medicine (Auckland, NZ), 42(7), 587-605.
Gupta, S.K., Foinquinos, A., Thum, S., Remke, J., Zimmer, K., Bauters, C., … Preissl, S. (2016). Preclinical development of a microRNA-based therapy for elderly patients with myocardial infarction. Journal of the American College of Cardiology, 68(14), 1557-1571.
He, F., Liu, H., Guo, J., Yang, D., Yu, Y., Yu, J., … & Du, Z. (2018). Inhibition of MicroRNA-124 reduces cardiomyocyte apoptosis following myocardial infarction via targeting STAT3. Cellular Physiology and Biochemistry, 51(1), 186-200.
Hosseinzadeh, L., Behravan, J., Mosaffa, F., Bahrami, G., Bahrami, A., & Karimi, G. (2011). Curcumin potentiates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells through generation of reactive oxygen species. Food and Chemical Toxicology, 49(5), 1102-1109.
Hu, S., Huang, M., Li, Z., Jia, F., Ghosh, Z., Lijkwan, M.A., ... & Wu, J.C. (2010). MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation, 122(11_suppl_1), S124-S131.
Izarra, A., Moscoso, I., Levent, E., Cañón, S., Cerrada, I., Díez-Juan, A., … & Ruíz-Sauri, A. (2014). miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction. Stem Cell Reports, 3(6), 1029-1042.
Junkun, L., Erfu, C., Tony, H., Xin, L., Sudeep, K.C., Mingliang, Z., ... & XiangQian, Q. (2016). Curcumin downregulates phosphate carrier and protects against doxorubicin induced cardiomyocyte apoptosis. BioMed Research International, 2016, 1-6.
Kang, B.Y., Khan, J.A., Ryu, S., Shekhar, R., Seung, K.B., & Mehta, J.L. (2010). Curcumin reduces angiotensin II-mediated cardiomyocyte growth via LOX-1 inhibition. Journal of Cardiovascular Pharmacology, 55(4), 417-424.
Liao, Z., Li, D., Chen, Y., Li, Y., Huang, R., Zhu, K., ... & Cai, D. (2019). Early moderate exercise benefits myocardial infarction healing via improvement of inflammation and ventricular remodelling in rats. Journal of Cellular and Molecular Medicine, 23(12), 8328-8342.
Liu, H., Wang, C., Qiao, Z., & Xu, Y. (2017). Protective effect of curcumin against myocardium injury in ischemia reperfusion rats. Pharmaceutical Biology, 55(1), 1144-1148.
Majidi, A., Poozesh Jadidi, R., Azali Alamdari, K., Bashiri, J., & Nourazar, M.A.R. (2020). Effects of aerobic training and curcumin supplementation on cardiomyocyte apoptosis and MiRNAs expression in rats exposed to arsenic. Sport Physiology, 12(48), 39-60. [In Persian]
Matkovich, S.J., Wang, W., Tu, Y., Eschenbacher, W.H., Dorn, L.E., Condorelli, G., . . . & Dorn, G.W. (2010). MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circulation Research, 106(1), 166-175.
McCully, J.D., Wakiyama, H., Hsieh, Y.J., Jones, M., & Levitsky, S. (2004). Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury. American Journal of Physiology-Heart and Circulatory Physiology, 286(5), H1923-H1935.
Moeini, M., Behpoor, N., & Tadibi, V. (2020). The effect of 8 weeks high intensity interval training on the expression of PI3K in the left ventricle and insulin resistance of male Wistar rats with type 2 diabetes. Journal of Practical Studies of Biosciences in Sport, 8(16), 48-58. [In Persian]
Morimoto, T., Sunagawa, Y., Kawamura, T., Takaya, T., Wada, H., Nagasawa, A., ... & Hasegawa, K. (2008). The dietary compound curcumin inhibits p300 histone Acetyltransferase activity and prevents heart failure in rats. The Journal of Clinical Investigation, 118(3), 868-878.
Morimoto, T., Sunagawa, Y., Fujita, M., & Hasegawa, K. (2010). Novel heart failure therapy targeting transcriptional pathway in cardiomyocytes by a natural compound, curcumin. Circulation Journal: Official Journal of the Japanese Circulation Society, 74(6), 1059-1066.
Naserzadeh, P., Mehr, S.N., Sadabadi, Z., Seydi, E., Salimi, A., & Pourahmad, J. (2018). Curcumin protects mitochondria and cardiomyocytes from oxidative damage and apoptosis induced by hemiscorpius lepturus venom. Drug Research, 68(2), 113-120.
Pan, Y., Wang, Y., Zhao, Y., Peng, K., Li, W., Wang, Y., ... & Liang, G. (2014). Inhibition of JNK phosphorylation by a novel curcumin analog prevents high glucose-induced inflammation and apoptosis in cardiomyocytes and the development of diabetic cardiomyopathy. Diabetes, 63(10), 3497-3511.
Pinchi, E., Frati, P., Aromatario, M., Cipolloni, L., Fabbri, M., La Russa, R., . . . & Scopetti, M. (2019). miR‐1, miR‐499 and miR‐208 are sensitive markers to diagnose sudden death due to early acute myocardial infarction. Journal of Cellular and Molecular Medicine, 23(9), 6005-6016.
Recchioni, R., Marcheselli, F., Olivieri, F., Ricci, S., Procopio, A. D., & Antonicelli, R. (2013). Conventional and novel diagnostic biomarkers of acute myocardial infarction: a promising role for circulating microRNAs. Biomarkers, 18(7), 547-558.
Rimbaud, S., Garnier, A., & Ventura-Clapier, R. (2009). Mitochondrial biogenesis in cardiac pathophysiology. Pharmacological Reports, 61(1), 131-138.
Rodrigues, B., Figueroa, D.M., Mostarda, C.T., Heeren, M.V., Irigoyen, M.C., & De Angelis, K. (2007). Maximal exercise test is a useful method for physical capacity and oxygen consumption determination in streptozotocin-diabetic rats. Cardiovascular Diabetology, 6(1), 1-7.
Ruíz-Vera, T., Ochoa-Martínez, Á.C., Zarazúa, S., Carrizales-Yáñez, L., & Pérez-Maldonado, I.N. (2019). Circulating miRNA-126,-145 and-155 levels in Mexican women exposed to inorganic arsenic via drinking water. Environmental Toxicology and Pharmacology, 67, 79-86.
Siddiqui, M., Ahmad, U., Khan, A., Ahmad, M., Badruddeen, K.M., & Akhtar, J. (2016). Isoprenaline: a tool for inducing myocardial infarction in experimental animals. International Journal of Pharmacy, 6(2), 138-144.
Somasundaram, S., Edmund, N.A., Moore, D.T., Small, G.W., Shi, Y.Y., & Orlowski, R.Z. (2002). Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. Cancer Research, 62(13), 3868-3875.
Song, C.-L., Liu, B., Diao, H.-Y., Shi, Y.-F., Li, Y.-X., Zhang, J.-C., … & Yu, Y.-P. (2014). The protective effect of microRNA-320 on left ventricular remodeling after myocardial ischemia-reperfusion injury in the rat model. International Journal of Molecular Sciences, 15(10), 17442-17456.
Sun, C., Liu, H., Guo, J., Yu, Y., Yang, D., He, F., & Du, Z. (2017). MicroRNA-98 negatively regulates myocardial infarction-induced apoptosis by down-regulating Fas and caspase-3. Scientific Reports, 7(1), 1-11.
Tang, Y., Zheng, J., Sun, Y., Wu, Z., Liu, Z., & Huang, G. (2009). MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. International Heart Journal, 50(3), 377-387.
Tony, H., Meng, K., Wu, B., Yu, A., Zeng, Q., Yu, K., & Zhong, Y. (2015). MicroRNA-208a dysregulates apoptosis genes expression and promotes cardiomyocyte apoptosis during ischemia and its silencing improves cardiac function after myocardial infarction. Mediators of Inflammation, 2015, 479123.
Tuttolomondo, A., Simonetta, I., & Pinto, A. (2016). MicroRNA and receptor mediated signaling pathways as potential therapeutic targets in heart failure. Expert Opinion on Therapeutic Targets, 20(11), 1287-1300.
Wang, B., Zhou, R., Wang, Y., Liu, X., Shou, X., Yang, Y., … & Wu, Q. (2020). Effect of high-intensity interval training on cardiac structure and function in rats with acute myocardial infarct. Biomedicine & Pharmacotherapy, 131, 110690.
Wang, N.P., Wang, Z.F., Tootle, S., Philip, T., & Zhao, Z.Q. (2012). Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction. British Journal of Pharmacology, 167(7), 1550-1562.
Waring, C.D., Vicinanza, C., Papalamprou, A., Smith, A.J., Purushothaman, S., Goldspink, D.F., … & Ellison, G. M. (2012). The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. European Heart Journal, 35(39), 2722-2731.
Winbanks, C.E., Ooi, J.Y., Nguyen, S.S., McMullen, J.R., & Bernardo, B.C. (2014). Micro RNAs differentially regulated in cardiac and skeletal muscle in health and disease: Potential drug targets?. Clinical and Experimental Pharmacology and Physiology, 41(9), 727-737.
Wu, X.D., Zeng, K., Liu, W.L., Gao, Y.G., Gong, C.S., Zhang, C.X., & Chen, Y.Q. (2014). Effect of Aerobic Exercise on miRNA-TLR4 Signaling in Atherosclerosis. International Journal of Sports Medicine, 35(4), 344-350.
Yang, B., Lin, H., Xiao, J., Lu, Y., Luo, X., Li, B., … & Wang, H. (2011). The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature Medicine, 17(12), 1693-1694.
Yi-Yuan, L., Chen, J.S., Wu, X.B., Shyu, W.C., Chaunchaiyakul, R., Xian-Li, Z., … & Lee, S.D. (2018). Combined effects of 17β-estradiol and exercise training on cardiac apoptosis in ovariectomized rats. PLoS One, 13(12), e0208633.
Ying, S.Y., Chang, D.C., & Lin, S.L. (2018). The MicroRNA. Methods in Molecular Biology (Clifton, NJ), 1733, 1-25.
Yu, L., Fan, Y., Ye, G., Li, J., Feng, X., Lin, K., ... & Wang, Z. (2015). Curcumin inhibits apoptosis and brain edema induced by hypoxia-hypercapnia brain damage in rat models. The American Journal of the Medical Sciences, 349(6), 521-525.
Yu, S., & Li, G. (2010). MicroRNA expression and function in cardiac ischemic injury. Journal of Cardiovascular Translational Research, 3(3), 241-245.
Yu, W., Zha, W., Ke, Z., Min, Q., Li, C., Sun, H., & Liu, C. (2016). Curcumin protects neonatal rat cardiomyocytes against high glucose-induced apoptosis via PI3K/Akt signalling pathway. Journal of Diabetes Research, 2016, 4158591.
Xiao, J., Sheng, X., Zhang, X., Guo, M., & Ji, X. (2016). Curcumin protects against myocardial infarction-induced cardiac fibrosis via SIRT1 activation in vivo and in vitro. Drug Design, Development and Therapy, 10, 1267-1277.
Zheng, H., Xie, N., Xu, H., Huang, J., Xie, X., & Luo, M. (2014). Effects of 4 month exercise on left ventricular remodeling and autonomic nervous system in hypertensive patients. Panminerva Medica, 58(1), 1-7.