Amati, F., Dubé, J. J., Alvarez-Carnero, E., Edreira, M. M., Chomentowski, P., Coen, P. M., . . .& Toledo, F. G. (2011). Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: another paradox in endurance-trained athletes? Diabetes, 60(10), 2588-2597.
Astorino, T. A., & Schubert, M. M. (2018). Changes in fat oxidation in response to various regimes of high intensity interval training (HIIT). European Journal of Applied Physiology, 118(1), 51-63.
Bosma, M., Minnaard, R., Sparks, L. M., Schaart, G., Losen, M., de Baets, M. H., . . .& Schrauwen, P. (2012). The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria. Histochemistry and Cell Biology, 137(2), 205-216.
Bosma, M., Sparks, L., Hooiveld, G., Jorgensen, J., Houten, S., Schrauwen, P., . . .& Hesselink, M. (2013). Overexpression of PLIN5 in skeletal muscle promotes oxidative gene expression and intramyocellular lipid content without compromising insulin sensitivity. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1831(4), 844-852.
Boström, P., Wu, J., Jedrychowski, M. P., Korde, A., Ye, L., Lo, J. C., . . .& Long, J. Z. (2012). A PGC1-[agr]-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463-468.
Brasaemle, D. L. (2007). Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. Journal of Lipid Research, 48(12), 2547-2559.
Cannon, B. (2004). Nedergaard J. Brown adipose tissue: function and physiological significance. Physiological Reviews, 84(1), 277-359.
Chavanelle, V., Boisseau, N., Otero, Y. F., Combaret, L., Dardevet, D., Montaurier, C., . . .& Sirvent, P. (2017). Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Scientific Reports, 7(1), 204.
Covington, J. D., Bajpeyi, S., Moro, C., Tchoukalova, Y. D., Ebenezer, P. J., Burk, D. H., . . .& Redman, L. M. (2015). Potential effects of aerobic exercise on the expression of perilipin 3 in the adipose tissue of women with polycystic ovary syndrome: a pilot study. European Journal of Endocrinology, 172(1), 47-58.
Covington, J. D., Johannsen, D. L., Coen, P. M., Burk, D. H., Obanda, D. N., Ebenezer, P. J., . . .& Bajpeyi, S. (2017). Intramyocellular lipid droplet size rather than total lipid content is related to insulin sensitivity after 8 weeks of overfeeding. Obesity, 25(12), 2079-2087.
Dalen, K. T., Dahl, T., Holter, E., Arntsen, B., Londos, C., Sztalryd, C., & Nebb, H. I. (2007). LSDP5 is a PAT protein specifically expressed in fatty acid oxidizing tissues. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1771(2), 210-227.
Ellong, E. N., Soni, K. G., Bui, Q.-T., Sougrat, R., Golinelli-Cohen, M. P., & Jackson, C. L. (2011). Interaction between the triglyceride lipase ATGL and the Arf1 activator GBF1. PloS One, 6(7), e21889.
Ghafari, M., Faramarzi, M., Banitalebi, E. (2018). Compar two different endurance training intensities on perilipin 3 protein expression in skeletal muscle, serum glucose levels and insulin in streptozotocin-induced diabetic rats. Iranian Journal of Diabetes and Metabolism, 17(4),198-205. [Persian]
Gjelstad, I., Haugen, F., Gulseth, H., Norheim, F., Jans, A., Bakke, S., . . .& Blaak, E. (2012). Expression of perilipins in human skeletal muscle in vitro and in vivo in relation to diet, exercise and energy balance. Archives of Physiology and Biochemistry, 118(1), 22-30.
Hafstad, A. D., Lund, J., Hadler-Olsen, E., Höper, A. C., Larsen, T. S., & Aasum, E. (2013). High-and moderate-intensity training normalizes ventricular function and mechanoenergetics in mice with diet-induced obesity. Diabetes, 62(7), 2287-2294.
Huh, J. Y., Mougios, V., Kabasakalis, A., Fatouros, I., Siopi, A., Douroudos, I. I., . . .& Mantzoros, C. S. (2014). Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism
through AMPK activation. The Journal of Clinical Endocrinology & Metabolism, 99(11), E2154-E2161.
Itabe, H., Yamaguchi, T., Nimura, S., & Sasabe, N. (2017). Perilipins: a diversity of intracellular lipid droplet proteins. Lipids in Health and Disease, 16(1), 83-91.
Kleinert, M., Parker, B. L., Chaudhuri, R., Fazakerley, D. J., Serup, A., Thomas, K. C., . . .& Richter, E. A. (2016). mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3. Molecular Metabolism, 5 (8):646-655.
Ko, K., Woo, J., Bae, J. Y., Roh, H. T., Lee, Y. H., & Shin, K. O. (2018). Exercise training improves intramuscular triglyceride lipolysis sensitivity in high-fat diet induced obese mice. Lipids in Health and Disease, 17(1), 81-9.
Kuramoto, K., Okamura, T., Yamaguchi, T., Nakamura, T. Y., Wakabayashi, S., Morinaga, H., . . .& Usuda, N. (2012). Perilipin 5, a lipid droplet-binding protein, protects heart from oxidative burden by sequestering fatty acid from excessive oxidation. Journal of Biological Chemistry, 287(28), 23852-23863.
Liu, X., Niu, Y., Yuan, H., Huang, J., & Fu, L. (2015). AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy. Metabolism, 64(6), 665-68.
Louche, K., Badin, P.-M., Montastier, E., Laurens, C., Bourlier, V., de Glisezinski, I., . . .& Moro, C. (2013). Endurance exercise training up-regulates lipolytic proteins and reduces triglyceride content in skeletal muscle of obese subjects. The Journal of Clinical Endocrinology & Metabolism, 98(12), 4863-4871.
MacPherson, R. E., Ramos, S. V., Vandenboom, R., Roy, B. D., & Peters, S. J. (2013). Skeletal muscle PLIN proteins, ATGL and CGI-58, interactions at rest and following stimulated contraction. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 304(8), R644-R650.
Minnaard, R., Schrauwen, P., Schaart, G., Jorgensen, J. A., Lenaers, E., Mensink, M., & Hesselink, M. K. (2009). Adipocyte differentiation-related protein and OXPAT in rat and human skeletal muscle: involvement in lipid accumulation and type 2 diabetes mellitus. The Journal of Clinical Endocrinology & Metabolism, 94(10), 4077-4085.
Moghadami, K., Mohebbi, H., Khalafi, M., Akbari, A., Faridnia, M., & Tabari, E. (2018). The effect of interval training intensity on protein levels of ATGL and Perilipin 5 in visceral adipose tissue of type 2 diabetic male rats. International Journal of Applied Exercise Physiology, 7(4), 62-70.
Osumi, T., & Kuramoto, K. (2016). Heart lipid droplets and lipid droplet-binding proteins: Biochemistry, physiology, and pathology. Experimental Cell Research, 340(2), 198-204.
Peters, S. J., Samjoo, I. A., Devries, M. C., Stevic, I., Robertshaw, H. A., & Tarnopolsky, M. A. (2012). Perilipin family (PLIN) proteins in human skeletal muscle: the effect of sex, obesity, and endurance training. Applied Physiology,Nnutrition, and Metabolism, 37(4), 724-735.
Pollak, N. M., Schweiger, M., Jaeger, D., Kolb, D., Kumari, M., Schreiber, R., . . .& Heier, C. (2013). Cardiac-specific overexpression of perilipin 5 provokes severe cardiac steatosis via the formation of a lipolytic barrier. Journal of Lipid Research, 54(4), 1092-1102.
Prats, C., Donsmark, M., Qvortrup, K., Londos, C., Sztalryd, C., Holm, C., . . .& Ploug, T. (2006). Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine. Journal of Lipid Research, 47(11), 2392-2399.
Ramos, S., Turnbull, P., MacPherson, R., LeBlanc, P., Ward, W., & Peters, S. (2015). Changes in mitochondrial perilipin 3 and perilipin 5 protein content in rat skeletal muscle following endurance training and acute stimulated contraction.
Experimental Physiology, 100(4), 450-462.
Ramos, S. V., MacPherson, R. E., Turnbull, P. C., Bott, K. N., LeBlanc, P., Ward, W. E., & Peters, S. J. (2014). Higher PLIN5 but not PLIN3 content in isolated skeletal muscle mitochondria following acute in vivo contraction in rat hindlimb. Physiological Reports, 2(10):e12154.
Rinnankoski-Tuikka, R., Hulmi, J. J., Torvinen, S., Silvennoinen, M., Lehti, M., Kivelä, R., . . .& Kainulainen, H. (2014). Lipid droplet-associated proteins in high-fat fed mice with the effects of voluntary running and diet change. Metabolism, 63(8), 1031-104.
Shaw, C. S., Shepherd, S. O., Wagenmakers, A. J., Hansen, D., Dendale, P., & van Loon, L. J. (2012). Prolonged exercise training increases intramuscular lipid content and perilipin 2 expression in type I muscle fibers of patients with type 2 diabetes. American Journal of Physiology-Endocrinology and Metabolism, 303(9), E1158-1165.
Shepherd, S. O., Cocks, M., Meikle, P. J., Mellett, N. A., Ranasinghe, A. M., Barker, T. A., . . .& Shaw, C. S. (2017). Lipid droplet remodelling and reduced muscle ceramides following sprint interval and moderate-intensity continuous exercise training in obese males. International Journal of Obesity, 41(12), 1745-1754.
Shepherd, S. O., Cocks, M., Tipton, K., Ranasinghe, A. M., Barker, T. A., Burniston, J. G., . . .& Shaw, C. S. (2013). Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. The Journal of Physiology, 591(3), 657-675.
Skinner, J. R., Shew, T. M., Schwartz, D. M., Tzekov, A., Lepus, C. M., Abumrad, N. A., & Wolins, N. E. (2009). Diacylglycerol enrichment of endoplasmic reticulum or lipid droplets recruits perilipin 3/TIP47 during lipid storage and mobilization. Journal of Biological Chemistry, 284(45), 30941-30948.
Soni, K. G., Mardones, G. A., Sougrat, R., Smirnova, E., Jackson, C. L., & Bonifacino, J. S. (2009). Coatomer-dependent protein delivery to lipid droplets. Journal of Cell Science, 122(11), 1834-1841.
Stallknecht, B., Vinten, J., Ploug, T., & Galbo, H. (1991). Increased activities of mitochondrial enzymes in white adipose tissue in trained rats. American Journal of Physiology-Endocrinology and Metabolism, 261(3), E410-E414.
Sutherland, L. N., Bomhof, M. R., Capozzi, L. C., Basaraba, S. A., & Wright, D. C. (2009). Exercise and adrenaline increase PGC-1α mRNA expression in rat adipose tissue. The Journal of physiology, 587(7), 1607-1617.
Sztalryd, C., & Kimmel, A. R. (2014). Perilipins: lipid droplet coat proteins adapted for tissue-specific energy storage and utilization, and lipid cytoprotection. Biochimie, 96, 96-101.
Trevellin, E., Scorzeto, M., Olivieri, M., Granzotto, M., Valerio, A., Tedesco, L., . . .& Reggiani, C. (2014). Exercise training induces mitochondrial biogenesis and glucose uptake in subcutaneous adipose tissue through eNOS-dependent mechanisms. Diabetes, 63(8), 2800-2811.
Wang, C., Zhao, Y., Gao, X., Li, L., Yuan, Y., Liu, F., . . .& Zhang, X. (2015). Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis. Hepatology, 61(3), 870-882.
Wang, H., Sreenivasan, U., Hu, H., Saladino, A., Polster, B. M., Lund, L. M., . . .& Sztalryd, C. (2011). Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. Journal of Lipid Research, 52(12), 2159-2168.
Wolins, N. E., Quaynor, B. K., Skinner, J. R., Schoenfish, M. J., Tzekov, A., & Bickel, P. E. (2005). S3-12, Adipophilin, and TIP47 package lipid in adipocytes. Journal of Biological Chemistry, 280(19), 19146-19155.