
تعداد نشریات | 21 |
تعداد شمارهها | 301 |
تعداد مقالات | 3,173 |
تعداد مشاهده مقاله | 3,211,848 |
تعداد دریافت فایل اصل مقاله | 2,380,306 |
ارزیابی مدلسازی فرآیند خشک کردن زعفران به روش آونگذاری با استفاده از شبکه عصبی مصنوعی | ||
پژوهش های زعفران | ||
دوره 8، شماره 1 - شماره پیاپی 15، شهریور 1399، صفحه 115-126 اصل مقاله (872.69 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/jsr.2020.2749.1111 | ||
نویسنده | ||
وحید حکیم زاده* | ||
استادیار گروه علوم و صنایع غذایی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران. | ||
چکیده | ||
زعفران ارزشمندترین ادویه شناختهشده در دنیا است. کروسین، پیکروکروسین و سافرانال بهترتیب به عنوان شاخص رنگ، طعم و آرومای زعفران شناخته میشوند. خشک کردن از مهمترین مراحل مؤثر بر کیفیت نهایی زعفران از لحاظ میزان کروسین، پیکروکروسین و سافرانال محسوب میگردد. در این تحقیق، کارایی فرآیند خشک کردن به روش آونگذاری بر اساس متغیرهای مهمی همچون دما، زمان و ضخامت لایه زعفران تحت مدلسازی به روش شبکه عصبی مصنوعی قرار گرفت. نتایج مدلسازی فرآیند خشک کردن زعفران به روش آونگذاری نشان داد که اگر تغییرات کروسین تحت قانون یادگیری مومنتوم و با تابع انتقال تانژانت با تعداد نورون 8 و با 25، 55 و 20 درصد دادهها به ترتیب برای آموزش ارزیابی و آزمون مورد استفاده قرار گیرد، بیشترین ضریب تعیین (914/0) را خواهد داشت. در حالیکه برای تغییرات میزان پیکروکروسین قانون یادگیری لونبرگ و تابع انتقال تانژانت در تعداد نورون 12 بهترین شبکه را با 50، 25 و 25 درصد دادهها به ترتیب برای آموزش، ارزیابی و آزمون (986/0 =R2) طراحی کرد. تغییرات سافرانال نیز با قانون یادگیری لونبرگ و تابع انتقال سیگموئید در تعداد نورون 8 و با 35، 45 و 20 درصد از دادهها برای آموزش، ارزیابی و آزمون با ضریب تعیین مناسب 981/0 مدل و توسط شبکه آن پیشبینی شد. | ||
کلیدواژهها | ||
پیکروکروسین؛ سافرانال؛ قانون یادگیری لونبرگ؛ کروسین | ||
مراجع | ||
Atefi, M., Akbari Oghaz, A.R., and Mehri, A., 2013. Drying effects on chemical and sensorial characteristics of saffron. Iran. J. Nutrition Sci. & Food Technol. 8(3), 201-208. [in Persian with English Summary].
Bansi, L., Raina, S.G., Agarwal, B., Ashok, K., Bhatia, I., and Govind, S.G., 1996. Changes in pigments and volatiles of saffron (Crocus sativus L.) during processing and storage. J. Sci. Food Agric. 71, 27-32.
Delgerange, N., Cabassud, C., Cabassud, M., Durand-Bourlier, L., and Lain, J.M., 1998. Neural network for prediction of ultrafiltration transmembrane pressure application to drink water. J. Membr. Sci. 150, 111–123.
Delshad, S., and Hakimzadeh, V., 2017. Optimization of saffron drying parameters by using oven and microwave using response surface methodology. J. Saffron Res. 5(2), 151-162. [in Persian with English Summary].
Gregory, M.J., Menary, R.C., and Davies, N.W., 2005. Effect of drying temperature and air flow on the production and retention of secondary metabolites in saffron. J. Agric. Food Chem. 53, 5969–5975.
ISIRI., 2001. General Saffron Specification. No. 259, Institute of Standards and Industrial Research of Iran. [in Persian].
ISO-3632-2-2003., 2003. Part I: Specification, Part 2: Test Methods. International Organization for Standardization, Geneva.
Madan, C., Kapur, B., and Gupta, U., 1966. Saffron. Econ. Bot. 20(4), 377-85.
Akhondi, E., Kazemi, A., and Maghsoodi, V., 2012. Determination of a suitable thin layer drying curve model for saffron (Crocus sativus L.) stigmas in an infrared dryer. Sci. Iran. 18(6), 1397–1401. [in Persian with English Summary].
Mazloumi, M., Taslimi, A., Jamshidi, A., Atefi, M., Haj Seyed Javadi, N., Komeyli Fanood, R., Seyed Ahmadian, F., Falahat Pishe, H., Choobdar, N., Hadian, Z., Golestan, B., and Shafighi, A., 2007. Comparing the effects of drying methods using by vacuum, freezing, sun, microwave with traditional method on properties of Ghaen saffron. Iran. J. Nutr. Sci. & Food Technol. 2(1), 69-76. [in Persian with English Summary].
Melynk, J.P., Wang, S., and Marcone, M.F., 2010. Chemical and biological properties of the world’s most expensive spice: Saffron. Food Res. Int. 43, 1981-1989.
Movagharnejad, K., and Nikzad, M., 2007.Modeling of tomato drying using artificial neural network. Comp. Elect. P. 78-85.
Rios, J., Recio, M., Giner, R., and Manez, S., 1996. An update review of saffron and its active constituents. Phytother. Res. 10(3), 189-93.
Razavi, S.M.A., Mousavi, S.M., and Mortazavi, S.A., 2003. Dynamic prediction of milk ultrafiltration performance: A neural network approach. Chem. Eng. Sci. 58, 4185–4195.
Salehi, F., and Razavi, S.M.A., 2012. Dynamic modeling of flux and total hydraulic resistance in nano filtration treatment of regeneration waste brine using artificial neural network. Desalin. Water Treat. 41, 95-104.
Shahidi Noghabi, M., Razavi, S.M.A, and Mousavi, S.M., 2012. Prediction of permeate flux and ionic compounds rejection of sugar beet press water nanofiltration using artificial neural networks. Desalin. Water Treat. 44(1–3), 83–91.
Shahriari. S., Hakimzadeh, V., and Shahidi, M., 2017. Modeling the efficiency of microfiltration process in Reducing the hardness, improvement the non-sugar component rejection and purity of raw sugar beet juice. Ukr. Food J. (6)4, 648-660.
Sujata, V., Ravishankar, G., and Venkataraman, L., 1992. Methods for the analysis of the saffron metabolites crocin, crocetins, Picrocrocin and safranal for the determination of the quality of the spice using thinlayer chromatography, high-performance liquid chromatography and gas chromatography. J. Chromatogr. A. 624(1), 497-502.
Trantilis, A.P., Beljebbar, A., Manfair, M., and Polissou, M.F.T., 1998. Raman spectroscopic study of carotenoids from saffron (Crocus sativus L.) and some derivatives. Spectroch. Acta. 54, 651-657.
Winterhalter, P., and Straubinger, M., 2000. Saffron-renewed interest in an ancient spice. Food Rev. Int. 16(1), 39-59. | ||
آمار تعداد مشاهده مقاله: 689 تعداد دریافت فایل اصل مقاله: 425 |