
تعداد نشریات | 21 |
تعداد شمارهها | 301 |
تعداد مقالات | 3,173 |
تعداد مشاهده مقاله | 3,211,756 |
تعداد دریافت فایل اصل مقاله | 2,380,284 |
اثرات متقابل شوری آب آبیاری و کود نیتروژنه اوره بر عملکرد و اجزای عملکرد گندم (.Triticum aestivum L) رقم بم | ||
تنشهای محیطی در علوم زراعی | ||
مقاله 20، دوره 13، شماره 3، مهر 1399، صفحه 937-951 اصل مقاله (514.04 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/escs.2020.2071.1554 | ||
نویسنده | ||
مهدی کریمی* | ||
استادیار پژوهش، مرکز ملی تحقیقات شوری، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد، ایران | ||
چکیده | ||
این پژوهش مزرعهای با هدف بررسی مقدار کود اوره موردنیاز گندم در سطوح مختلف شوری آب آبیاری طراحی و در ایستگاه تحقیقات شوری صدوق یزد که مجهز به استخرهای ذخیره آب با کیفیتهای مختلف است اجرا شد. این تحقیق دارای سه سطح شوری آب آبیاری 1.88، 7.22 و 16.14 دسیزیمنس برمتر و پنج سطح کود اوره شامل 0 (صفر)، 100، 200، 300 و 400 کیلوگرم در هکتار بود. آزمایش در قالب طرح آماری بلوکهای کامل تصادفی و بهصورت اسپلیت پلات با سه تکرار اجرا شد. نتایج نشان داد که مصرف کود اوره در کلیه سطوح شوری آب آبیاری ضرورت دارد. الگوی پاسخ گندم به کود نیتروژنی در هر سه سطح شوری مشابه بود و از معادله درجه دوم پیروی کرد، لیکن با افزایش شدت تنش شوری، شیب افزایش عملکرد کاهش یافت. همچنین نتایج این تحقیق نشان داد که با افزایش شوری آب آبیاری از 1.88 به 7.22 دسیزیمنس بر متر عملکرد دانه گندم کاهش معنیداری نداشت و نیاز کودی نیز تغییری نکرد. اما با افزایش شوری آب آبیاری به 16.14 دسیزیمنس بر متر میزان عملکرد دانه به میزان یک تن و اوره موردنیاز به میزان 140 کیلوگرم در هکتار کاهش یافت. درمجموع، نتایج این پژوهش نشان داد که برای تولید حدود 4.5 تن دانه گندم با استفاده از آب آبیاری با هدایت الکتریکی 1.88 تا 7.22 دسیزیمنس بر متر در شرایط گرم و خشک استان یزد مصرف کود اوره به ترتیب به میزان 400 و 300 کیلوگرم در هکتار و برای تولید 3.6 تن در هکتار عملکرد دانه با استفاده از آب آبیاری با هدایت الکتریکی 16.14 دسیزیمنس بر متر مصرف 260 کیلوگرم در هکتار اوره کفایت میکند. | ||
کلیدواژهها | ||
تولید گندم؛ خاک آهکی؛ شوری آب آبیاری؛ یزد | ||
مراجع | ||
Alley, M.M., Scharf, P., Brann, D.E., Baethgen W.E., Hammons J.L., 1996. Nitrogen management for winter wheat: principles and recommendations. Retrieved Jan 20, 2019, from https://www.pubs.ext.vt.edu/424/424-026/424-026.html. Ayers, R.S., Westcot, D.W., 1985. Water quality for agriculture, FAO Irrigation and Drainage Paper No. 29, Rev. 1, U.N. Food and Agriculture Organization, Rome. Azizian, A., Sepaskhah, A.R. 2014. Maize response to water, salinity, and nitrogen levels: Physiological growth parameters and gas exchange. International Journal of Plant Production. 8, 107-130. Balali, M., Mohajeremilani, P., Khademi, Z., Doroodi, M.S., Mashayekhi, H.H., Malakooti, M.J., 2000. A comperehensive computer model for fertilizer recommendation towards sustainable agriculture. Ammozeshe Keshavarzi Press, Karaj. [In Persian]. Banaee, M.H., Moameni, A., Bybordi, M., Malakouti, M.J., 2005. The soils of Iran. Sana press, Theran. [In Persian]. Behbahanizadah, A.A., Ehyaee, M., 1993. Methods of soil analysis. Soil and Water Research Institute paper No. 893, Soil and Water Research Institute Press, Tehran. [In Persian]. Behbouieh, M., 2018. Elucidation of salinity, nitrogen source and pH on the nitrogen volatization. MSc dissertation, Faculty of Agriculture, University of Shahed, Iran. [In Persian]. Bernstein, L., Francois, L.E., Clark, R.A., 1974. Interactive effects of salinity and fertility on yields of grains and vegetables. Agronomy Journal. 66, 412-421. Bezerra, I.L., Gheyi, H.R., Nobre, R.G., Lima, G.S., Santos, J.B., Fernandes, P.D., 2018. Interaction between soil salinity and nitrogen on growth and gaseous exchanges in guava. Ambiente and Água, 13 (3), 1-12. Bouyoucos, C.J., 1962. Hydrometer method improved for making particle-size analysis of soil. Agronomy Journal. 54, 406-465. Brady, N.C., Weil, R.R., 2002. The nature and properties of soils. Prentice Hall Press, Upper Saddle River. Chen, W., Hou, Z., Wu, L., Liang, Y., Wei, C., 2010. Effects of salinity and nitrogen on cotton growth in arid environment. Plant Soil. 326, 61-73. FAO. 2005. Fertilizer use by crop in the Islamic Republic of Iran. Retrieved March 10, 2019, from http://www.fao.org/3/a-a0037e.pdf. Grattan, S.R., Grieve, C.M., 1999. Mineral nutrient acquistion and response by plants grown in saline environments. In: Pessarakli, M., (ed.), Handbook of Plant and Crop Stress. CRC Press, New York, USA, pp. 275-300. Gardner, T., 2017. Evaluation of in-season wheat nutrient uptake changes and nitrogen management for grain and dual purpose winter wheat. MSc dissertation, Faculty of Agriculture, Kansas State University, USA. Hanson B.R., Grattan, S.R., Fulton, A., 2006. Agricultural salinity and drainage. Retrieved Jan. 18, 2018, from https://www.researchgate. net/publication/321144519_Agricultural_Salinity_and_Drainage. Jones, C., Jacobsen, J., 2005. Nitrogen cycling, testing and fertilizer recommendations. Retrieved April 12, 2019, from http://landresources.montana.edu/nm/documents/NM3.pdf. Karimi, M., 2015. A Guideline for Wheat Nitogen Fertilization. Sahrasharq Press, Mashhad. [In Persian]. Karimi, M., Khayyambashi, B., Cheraghi, S.A.M., Nikkhah, M., Rahimian, M.H., Pirasteh-Anosheh, H., Shirantafti, M., Soltanigerdefaramarzi, S., 2020. Elucidation of wheat response to phosphorous application rates and salinity stress under field conditions. Environmental Stresses in Crop Sciences. 13(1), 313-318. [In Persian with English Summary]. Karimi, M., 2019. Effects of irrigation water qualities and iron sulphate application rates on wheat (Triticum aestivum L.) yield and yield components. Environmental Stresses in Crop Sciences. 12(4), 1303-1312. [In Persian with English Summary]. Kazemeini, S.A.R., Alinia, M., Shakeri, E., 2016. Interaction effect of salinity stress and nitrogen on growth and activity of antioxidant enzymes of blue panicgrass (Panicum antidotale Retz.). Environmental Stresses in Crop Sciences. 9(3), 279-289. [In Persian with English Summary]. Khattak, S.I., Baloch, M.S., Naveed, K., Khan, E.A., 2017. Improving farmer’s income and nitrogen use efficiency of dry land wheat through soil and foliar application of N-Fertilizer. Sarhad Journal of Agriculture. 33(3), 344-349. Keshavarz, P., Moshiri, F., Tehrani, M.M., Balali, M.R., 2015. The Necessity of Integrated Soil Fertility Management for Wheat Production in Iran. Journal of Land Management. 3, 61-72. [In Persian]. Lacerda, C.F., Ferreira, J.F.S., Liu, X., Suarez, D.L., 2015. Evapotranspiration as a Criterion to Estimate Nitrogen Requirement of Maize under Salt Stress. Journal of Agronomy and Crop Science. 202, 192-202. Maas, E.V., 1990. Crop salt tolerance. In: Tanji, K.K., (ed.), Agricultural Salinity Assessment and Management. (pp. 262-303). ASCE. Manuals and Reports on Engineering Practice No.71.Am.Soc.Civil Engineers, New York. Maas, E.V., Hoffman, G.J., 1977. Crop salt tolerance-current assessment. Journal of Irrigation and Drainage Division, American Society of Civil Engineers. 103, 115-134. Malakooti, M.J., 2010. Balanced Nutrition of Wheat. Amoozeshe Keshavarzi Press. Karaj. [In Persian]. Moshiri, F., Shahabi, A.A., Keshavarz, P., Khoogar, Z., Feiziasl, V., Tehrani, M.M., Asadirahmani, H., Samavat, S., Qeibi, M.N., Sadri, M.H., Rashidi, N., Khademi, Z., 2014. Guidelines for Integrated Soil Fertility and Plant Nutrition Management of Wheat. Sana Press, Tehran. [In Persian]. Motesharezadeh, B., Vatanara, F., Savaghebi, G.R., 2015. Effect of Potassium and Zinc on Some Responses of Wheat (Triticum aestivum L.) under Salinity Stress. Iranian Journal of Soil Research. 29, 243-381. [In Persian with English summary]. OmidiNasab, D., Gharineh, M.H., Bakhshande, A., Sharafizade, M., Shafeinia, A., Saghali, A., 2015. The Effect of Seeding Rates and Nitrogen fertilizer on Yield and Yield Components of Wheat Cultivars in Corn residue (No Tillage). Iranian Journal of Field Crops Research. 13(3), 598-610. Qadir, M., Quillerou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., Dreschel, P., Noble, A.D., 2014. Economics of salt-induced land degradation and restoration. Natural Resource Forum. 38, 282-295. RezvaniMoghaddam, P., Koocheki, A., 2001. Research history on salt affected lands of Iran: present and future prospects-halophytic ecosystem. p. 83-97. In: F.K., Taha, Isamail, SH., A.A. Jaradat (eds), Proceedings of the International Symposium on Prospects of Saline Agriculture in the GCC countries, 18-20 March. 2001. Dubai, UAE. Vahhabzadeh, M., Majidiheravan, E., Hajakhoondimeibodi, H., Tabatabaee, M. T., Bozorgipoor, R., Bakhtiar, F., Akbari, A., Pakder, A., Sharifolhoseini, M., Afyouni, D., Rostami, H., Azarmjoo, H., Koohkan, SH., Amirijebalbarez, Q., Saberi, M. H., Binab, H., Qandi, A., Bahraee, S., Torabi, M., Nazari, K. and Pirayeshfar, B., 2009. Bam, A new bread wheat cultivar for moderate climate zones with salinity of soil and water. Seed and Plant Improvement Journal. 25, 223-226. [In Persian with English Summary]. Watanabe, F.S., Olsen, S.R., 1965. Test of an ascorbic acid method for determining phosphorous in water and NaHCO3 extract from soil. Soil Science of American Procedure. 29, 677-678. Yaghoubian, I., Ghassemi, S., Yaghoubian, Y., 2017. Effect of sowing date and urea fertilizer on some morphological traits, yield and yield components of wheat in Hashtroud, Iran climate condition. Agroecology Journal. 13(2), 53-64. | ||
آمار تعداد مشاهده مقاله: 750 تعداد دریافت فایل اصل مقاله: 470 |