Asano, M., Kaneoka, K., Nomura, T., Asano, K., Sone, H., Tsurumaru, K., & Okuda, Y. (1998). Increase in serum vascular endothelial growth factor levels during altitude training. Acta Physiologica Scandinavica, 162(4), 455-459.
Breen, E. C., Johnson, E. C., Wagner, H., Tseng, H. M., Sung, L. A., & Wagner, P. D. (1996). Angiogenic growth
factor mRNA responses in muscle to a single bout of exercise. Journal of Applied Physiology, 81(1), 355-361.
Carrow, R. E., Brown, R. E., & Van Huss, W. D. (1967). Fiber sizes and capillary to fiber ratios in skeletal muscle
of exercised rats. The Anatomical Record, 159(1), 33-39.
Czarkowska-Paczek, B ,.Bartlomiejczyk, I., & Przybylski, J. (2006). The serum levels of growth factors: PDGF,
TGF-beta and VEGF are increased after strenuous physical exercise. Journal of Physiology and Pharmacology, 57(2), 189-97.
Friedmann, B., Frese, F., Menold, E., & Bärtsch, P. (2007). Effects of acute moderate hypoxia on anaerobic capacity in endurance-trained runners. European Journal of Applied Physiology, 101(1), 67-73.
Gavin, T. P., Spector, D. A., Wagner, H., Breen, E. C., & Wagner, P. D. (2000). Effect of captopril on skeletal muscle angiogenic growth factor responses to exercise. Journal of Applied Physiology, 88(5), 1690-1697.
Gustafsson, T., Ameln, H., Fischer, H., Sundberg, C. J., Timmons, J. A., & Jansson, E. (2005). VEGF-A splice variants and related receptor expression in human skeletal muscle following submaximal exercise. Journal of Applied Physiology, 98(6), 2137-2146.
Gustafsson, T., Knutsson, A., Puntschart, A., Kaijser, L., Nordqvist, S. A. C., Sundberg, C., & Jansson, E. (2002). Increased expression of vascular endothelial growth factor in human skeletal muscle in response to short-term one-legged exercise training. Pflügers Archiv - European Journal of Physiology, 444(6), 752-759.
Jensen, L., Bangsbo, J., & Hellsten, Y. (2004). Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. The Journal of Physiology, 557(2), 571-582.
Kon, M., Ohiwa, N., Honda, A., Matsubayashi, T., Ikeda, T., Akimoto, T., ... & Russell, A. P. (2014). Effects of systemic hypoxia on human muscular adaptations to resistance exercise training. Physiological Reports, 2(6), e12033.
Kraus, R. M., Stallings, H. W., Yeager, R. C., & Gavin, T. P. (2004). Circulating plasma VEGF response to exercise in sedentary and endurance-trained men. Journal of Applied Physiology, 96(4), 1445-1450.
Lundby, C., Calbet, J. A., & Robach, P. (2009). The response of human skeletal muscle tissue to hypoxia. Cellular and Molecular Life Sciences, 66(22), 3615-3623.
Mounier, R., Pialoux, V., Roels, B., Thomas, C., Millet, G., Mercier, J., ... & Clottes, E. (2009). Effect of intermittent hypoxic training on HIF gene expression in human skeletal muscle and leukocytes. European Journal of Applied Physiology, 105(4), 515.
Nemet, D., Hong, S., Mills, P. J., Ziegler, M. G., Hill, M., & Cooper, D. M. (2002). Systemic vs. local cytokine and leukocyte responses to unilateral wrist flexion exercise. Journal of Applied Physiology, 93(2), 546-554.
Nourshahi, M., Pirouz, M., Hovanloo, F., & Bigdeli, M. R. (2011). Comparison of the effect of eight weeks training in hypoxia-normbaric situation and normal situation on Angiogenesis. Sport Physiology, 3(9), 160-174. [Persian]
Pedlar, C. R., Whyte, G. P., & Godfrey, R. J. (2008). Pre-acclimation to exercise in normobaric hypoxia. European Journal of Sport Science, 8(1), 15-21.
Pirouz, M., & Nourshahi, M. (2013). The effect of eight weeks of training in hypoxia-normobaric and normal conditions on the concentration of VEGF Erythropoietin Serum, VO2max and fatigue index. Journal of Sport Bioscience Researches, 3(10), 19-31. [Persian]
Prior, B. M., Yang, H. T., & Terjung, R. L. (2004). What makes vessels grow with exercise training?. Journal of Applied Physiology, 97(3), 1119-1128.
Puype, J., Van Proeyen, K., Raymackers, J. M., Deldicque, L., & Hespel, P. (2013). Sprint interval training in hypoxia stimulates glycolytic enzyme activity. Medicine & Science in Sports & Exercise, 45(11), 2166-2174.
Ravasi, A., Yadegari, M., & Choobineh, S. (2014). The effect of two types of physical activity on serum VEGF-A
response in non-athletic men. Sport Bioscience (Harkat), 6(1), 41-56. [Persian]
Rey, S., & Semenza, G. L. (2010). Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovascular Research, 86(2), 236-242.
Saunders, P. U., Pyne, D. B., & Gore, C. J. (2009). Endurance training at altitude. High Altitude Medicine & Biology, 10(2), 135-148.
Takagi, H., King, G. L., Robinson, G. S., Ferrara, N., & Aiello, L. P. (1996). Adenosine mediates hypoxic induction of vascular endothelial growth factor in retinal pericytes and endothelial cells. Association for Research in Vision and Ophthalmology, 37(11), 2165-76.
Van Craenenbroeck, E. M., Vrints, C. J., Haine, S. E., Vermeulen, K., Goovaerts, I., Van Tendeloo, V. F., ... & Conraads, V. M. (2008). A maximal exercise bout increases the number of circulating CD34+/KDR+ endothelial progenitor cells in healthy subjects. Relation with lipid profile. Journal of Applied Physiology, 104(4), 1006-1013.
Wahl, P., Zinner, C., Achtzehn, S., Behringer, M., Bloch, W., & Mester, J. (2011). Effects of acid–base balance and high or low intensity exercise on VEGF and bFGF. European Journal of Applied Physiology, 111(7), 1405-1413.
Wilber, R. L. (2007). Application of altitude/hypoxic training by elite athletes. Medicine & Science in Sports & Exercise, 39(9), 1610-1624.