Adamo, M. L., & Farrar, R. P. (2006). Resistance training, and IGF involvement in the maintenance of muscle mass during the aging process. Ageing Research Reviews, 5(3), 310-331.
Afsharnezhad, T., Nourshahi, M., & Parvardeh, S. (2016). Effect of resistance training on functional and histopathological changes in muscle after chronic strain Injury in elderly rat. Journal Mazandaran University Medical Sciences, 26(140), 33-44. [Persian]
Ballak, S. B., Degens, H., de Haan, A., & Jaspers, R. T. (2014). Aging related changes in determinants of muscle force generating capacity: a comparison of muscle aging in men and male rodents. Ageing Research Reviews, 14, 43-55.
Bamman, M. M., Ragan, R. C., Kim, J. S., Cross, J. M., Hill, V. J., Tuggle, S. C., & Allman, R. M. (2004). Myogenic protein expression before and after resistance loading in 26- and 64-yr-old men and women. Journal of Applied Physiology, 97(4), 1329-1337.
Borde, R., Hortobagyi, T., & Granacher, U. (2015). Dose-response relationships of resistance training in healthy old adults: A systematic review and meta-analysis. Sports Medicine, 45(12), 1693-1720.
Brook, M. S., Wilkinson, D. J., Mitchell, W. K., Lund, J. N., Phillips, B. E., Szewczyk, N. J., … & Atherton, P. J. (2016). Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age-related anabolic resistance to exercise in humans. The Journal of Physiology, 594(24), 7399-7417.
Bruunsgaard, H., Bjerregaard, E., Schroll, M., & Pedersen, B. K. (2004). Muscle strength after resistance training is inversely correlated with baseline levels of soluble tumor necrosis factor receptors in the oldest old. Journal of the American Geriatrics Society, 52(2), 237-241.
Burd, N. A., West, D. W., Staples, A. W., Atherton, P. J., Baker, J. M., Moore, D. R., & Phillips, S. M. (2010). Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One, 5(8), e12033.
Ciolac, E. G. (2013). Exercise training as a preventive tool for age-related disorders: a brief review. Clinics, 68(5), 710-717.
Ciolac, E. G., & Rodrigues-da-Silva, J. M. (2016). Resistance training as a tool for preventing and treating musculoskeletal disorders. Sports Medicine, 46(9), 1239-1248.
Dedkov, E. I., Kostrominova, T. Y., Borisov, A. B., & Carlson, B. M. (2003). MyoD and myogenin protein expression in skeletal muscles of senile rats. Cell and Tissue Research, (3), 401-416.
Domingues-Faria, C., Vasson, M. P., Goncalves-Mendes, N., Boirie, Y., & Walrand, S. (2016). Skeletal muscle regeneration and impact of aging and nutrition. Ageing Research Reviews, 26, 22-36.
Drummond, M. J., Conlee, R. K., Mack, G. W., Sudweeks, S., Schaalje, G. B., & Parcell, A. C. (2010). Myogenic regulatory factor response to resistance exercise volume in skeletal muscle. European Journal of Applied Physiology, 108(4), 771-778.
Drummond, M. J., Dreyer, H. C., Pennings, B., Fry, C. S., Dhanani, S., Dillon, E. L., … & Rasmussen, B. B. (2008). Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. Journal of Applied Physiology, 104(5), 1452-1461.
Drummond, M. J., Fry, C. S., Glynn, E. L., Timmerman, K. L., Dickinson, J. M., Walker, D. K., … & Rasmussen, B. B. (2011). Skeletal muscle amino acid transporter expression is increased in young and older adults following resistance exercise. Journal of Applied Physiology, 111(1), 135-142.
Faulkner, J. A., Larkin, L. M., Claflin, D. R., & Brooks, S. V. (2007). Age-related changes in the structure and function of skeletal muscles. Clinical and Experimental Pharmacology and Physiology, 34(11), 1091-1096.
Fujimaki, S., Hidaka, R., Asashima, M., Takemasa, T., & Kuwabara, T. (2014). Wnt protein-mediated satellite cell conversion in adult and aged mice following voluntary wheel running. Journal of Biological Chemistry, 289(11), 7399-7412.
Gault, M. L., & Willems, M. E. (2013). Aging, functional capacity and eccentric exercise training. Aging and Disease, 4(6), 351-363.
Gibson, T. M., & Gersbach, C. A. (2015). Single-molecule analysis of myocyte differentiation reveals bimodal lineage commitment. Integrative Biology, 7(6), 663-671.
Gundersen, K. (2011). Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biological Reviews, 86(3), 564-600.
Hulmi, J. J., Kovanen, V., Lisko, I., Selanne, H., & Mero, A. A. (2008). The effects of whey protein on myostatin and cell cycle-related gene expression responses to a single heavy resistance exercise bout in trained older men. European Journal of Applied Physiology, 102(2), 205-213.
Hwee, D. T., & Bodine, S. C. (2009). Age-related deficit in load-induced skeletal muscle growth. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 64(6), 618-628.
Iolascon, G., Di Pietro, G., Gimigliano, F., Mauro, G. L., Moretti, A., Giamattei, M. T., … & Brandi, M. L. (2014). Physical exercise and sarcopenia in older people: position paper of the Italian Society of Orthopaedics and Medicine. Clinical Cases in Mineral and Bone Metabolism, 11(3), 215-221.
Jang, Y. C., & Van Remmen, H. (2011). Age-associated alterations of the neuromuscular junction. Experimental Gerontology, 46(2-3), 193-198.
Jensky, N. E., Sims, J. K., Rice, J. C., Dreyer, H. C., & Schroeder, E. T. (2007). The influence of eccentric exercise on mRNA expression of skeletal muscle regulators. European Journal of Applied Physiology, 101(4), 473-480.
Kirby, T. J., Lee, J. D., England, J. H., Chaillou, T., Esser, K. A., & McCarthy, J. J. (2015). Blunted hypertrophic response in aged skeletal muscle is associated with decreased ribosome biogenesis. Journal of Applied Physiology, 119(4), 321-327.
Kosek, D., Kim, J., Petrella, J., Cross, J., & Bamman, M. (2006). Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanism in young vs older adults. Journal of Applied Physiology, 101(2), 531-44.
Kumar, V., Selby, A., Rankin, D., Patel, R., Atherton, P., Hildebrandt, W., … & Rennie, M. J. (2009). Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. The Journal of Physiology, 587(1), 211-217.
Lee, J. D., Fry, C. S., Mula, J., Kirby, T. J., Jackson, J. R., Liu, F., … & Peterson, C. A. (2016). Aged muscle demonstrates fiber-type adaptations in response to mechanical overload, in the absence of myofiber hypertrophy, independent of satellite cell abundance. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 71(4), 461-467.
Legerlotz, K., & Smith, H. K. (2008). Role of MyoD in denervated, disused, and exercised muscle. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 38(3), 1087-1100.
McKay, B. R., O'Reilly, C. E., Phillips, S. M., Tarnopolsky, M. A., & Parise, G. (2008). Co-expression of IGF-1 family members with myogenic regulatory factors following acute damaging muscle-lengthening contractions in humans. The Journal of Physiology, 586(22), 5549-5560.
Mero, A. A., Hulmi, J. J., Salmijarvi, H., Katajavuori, M., Haverinen, M., Holviala, J., … & Selanne, H. (2013). Resistance training induced increase in muscle fiber size in young and older men. European Journal of Applied Physiology, 113(3), 641-650.
Millay, D. P., Sutherland, L. B., Bassel-Duby, R., & Olson, E. N. (2014). Myomaker is essential for muscle regeneration. Genes & Development, 28(15), 1641-1646.
Peterson, M. D., Rhea, M. R., Sen, A., & Gordon, P. M. (2010). Resistance exercise for muscular strength in older adults: a meta-analysis. Ageing Research Reviews, 9(3), 226-237.
Phillips, B. E., Williams, J. P., Greenhaff, P. L., Smith, K., & Atherton, P. J. (2017). Physiological adaptations to resistance exercise as a function of age. Journal of Clinical Investigation Insight, 2(17), p95581.
Popov, D. V., Lysenko, E. A., Bachinin, A. V., Miller, T. F., Kurochkina, N. S., Kravchenko, I. V., … & Vinogradova, O. L. (2015). Influence of resistance exercise intensity and metabolic stress on anabolic signaling and expression of myogenic genes in skeletal muscle. Muscle Nerve, 51(3), 434-442.
Psilander, N., Damsgaard, R., & Pilegaard, H. (2003). Resistance exercise alters MRF and IGF-1 mRNA content in human skeletal muscle. Journal of Applied Physiology, 95(3), 1038-44.
Raue, U., Slivka, D., Jemiolo, B., Hollon, C., & Trappe, S. (2006). Myogenic gene expression at rest and after a bout of resistance exercise in young (18-30 yr) and old (80-89 yr) women. Journal of Applied Physiology, 101(1), 53-59.
Schultz, E., Chamberlain, C., McCormick, K. M., & Mozdziak, P. E. (2006). Satellite cells express distinct patterns of myogenic proteins in immature skeletal muscle. Developmental Dynamics: an Official Publication of the American Association of Anatomists, 235(12), 3230-3239.
Shavlakadze, T., McGeachie, J., & Grounds, M. D. (2009). Delayed but excellent myogenic stem cell response of regenerating geriatric skeletal muscles in mice. Biogerontology, 11(3), 363-376.
Sjogaard, G., Zebis, M. K., Kiilerich, K., Saltin, B., & Pilegaard, H. (2013). Exercise training and work task induced metabolic and stress-related mRNA and protein responses in myalgic muscles. BioMed Research International, 2013, 1-12.
Snijders, T., Nederveen, J. P., McKay, B. R., Joanisse, S., Verdijk, L. B., van Loon, L. J. C., & Parise, G. (2015). Satellite cells in human skeletal muscle plasticity. Frontiers in Physiology, 6, 283.
Snijders, T., Verdijk, L. B., Beelen, M., McKay, B. R., Parise, G., Kadi, F., & van Loon, L. J. (2012). A single bout of exercise activates skeletal muscle satellite cells during subsequent overnight recovery. Experimental Physiology, 97(6), 762-773.
Snijders, T., Verdijk, L. B., Smeets, J. S., McKay, B. R., Senden, J. M., Hartgens, F., … & van Loon, L. J. (2014). The skeletal muscle satellite cell response to a single bout of resistance-type exercise is delayed with aging in men. Age, 36(4), 96-99.
Spillane, M., Schwarz, N., Leddy, S., Correa, T., Minter, M., Longoria, V., & Willoughby, D. S. (2011). Effects of 28 days of resistance exercise while consuming commercially available pre- and post-workout supplements, NO-Shotgun(R) and NO-Synthesize(R) on body composition, muscle strength and mass, markers of protein synthesis, and clinical safety markers in males. Nutrition & Metabolism, 8(1), 78.
Stefanetti, R., Zacharewicz, E., Della Gatta, P., Garnham, A., Russell, A., & Lamon, S. (2014). Ageing has no effect on the regulation of the ubiquitin proteasome-related genes and proteins following resistance exercise. Frontiers in Physiology, 5, 1-30.
Suetta, C., Aagaard, P., Rosted, A., Jakobsen, A. K., Duus, B., Kjaer, M., & Magnusson, S. P. (2004). Traininginduced changes in muscle CSA, muscle strength, EMG, and rate of force development in elderly subjects after long-term unilateral disuse. Journal of Applied Physiology, 97(5), 1954-1961.
Thomson, D. M., & Gordon, S. E. (2005). Diminished overload-induced hypertrophy in aged fast-twitch skeletal muscle is associated with AMPK hyperphosphorylation. Journal of Applied Physiology, 98(2), 557-564.
Willoughby, D., & Nelson, M. (2002). Myosin heavy-chain mrna expression after a single bout session of heavy-resistance exercise. Medicine and Science in Sports and Exercise, 34(8), 1262-9.
Xu, Q., & Wu, Z. (2000). The insulin-like growth factor-phosphatidylinositol 3-kinase-Akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcoma-derived RD cells. Journal of Biological Chemistry, 275(47), 36750-36757.
Zanou, N., & Gailly, P. (2013). Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cellular and Molecular Life Sciences, 70(21), 4117-4130.