Callis, T. E., Chen, J. F., & Wang, D. Z. (2007). MicroRNAs in skeletal and cardiac muscle development. DNA and Cell
Biologyl, 26(4), 219-225.
Callis, T. E., Deng, Z., Chen, J. F., & Wang, D. Z. (2008). Muscling Through the microRNA World. Experimental Biology
and Medicine, 233(2), 131-138.
Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., ... & Wang, D. Z. (2006). The role of
microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 38(2), 228-233.
Coffey, V. G., Shield, A., Canny, B. J., Carey, K. A., Cameron-Smith, D., & Hawley, J. A. (2006). Interaction of
contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. American Journal of
Physiology - Endocrinology and Metabolism, 290(5), E849-855.
Drummond, M. J., McCarthy, J. J., Fry, C. S., Esser, K. A., & Rasmussen, B. B. (2008). Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. American Journal of Physiology-Endocrinology and Metabolism, 295(6), E1333-1340.
Ebrahimpour, S., & Irandoust, K. (2016). The effects of aerobic exercise and omega-3 supplementation on plasma
ghrelin and appetite levels in obese women. Journal of Practical Studies of Biosciences in Sport, 4(7), 33-42. [Persian]
Elia, L., Contu, R., Quintavalle, M., Varrone, F., Chimenti, C., Russo, M. A., ... & Condorelli, G. (2009). Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological
and pathological conditions. Circulation, 120(23), 2377-2385.
Ghorbanian, B., & Ghasemnian, A. (2016). The effects of 8 weeks interval endurance combined training on plasma TNF-α, IL-10, insulin resistance and lipid profile in boy adolescents. Journal of Practical Studies of Biosciences in Sport, 4(7), 43-54. [Persian]
Huang, M. B., Xu, H., Xie, S. J., Zhou, H., & Qu, L. H. (2011). Insulin-like growth factor-1 receptor is regulated
by microRNA-133 during skeletal myogenesis. PLOS ONE, 6(12), e29173.
Jin, H., Yang, R., Li, W., Lu, H., Ryan, A. M., Ogasawara, A. K., … & Paoni, N. F. (2000). Effects of exercise training on
cardiac function, gene expression, and apoptosis in rats. American Journal of Physiology -Heart and Circulatory Physiology, 279(6), H2994-3002.
Kadi, F., Johansson, F., Johansson, R., Sjostrom, M., & Henriksson, J. (2004). Effects of one bout of endurance exercise on
the expression of myogenin in human quadriceps muscle. Histochemistry and Cell Biology, 121(4), 329-334.
Keller, P., Vollaard, N. B., Gustafsson, T., Gallagher, I. J., Sundberg, C. J., Rankinen, T., … & Timmons, J. A. (2011). A
transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype. Journal of Applied
Physiology, 110(1), 46-59.
Kirby, T. J., & McCarthy, J. J. (2013). MicroRNAs in skeletal muscle biology and exercise adaptation. Free Radical Biology and Medicine, 64, 95-105.
Lewis, A., Riddoch-Contreras, J., Natanek, S. A., Donaldson, A., Man, W. D., Moxham, J., … & Kemp, P. R. (2012).
Downregulation of the serum response factor / miR-1 axis in the quadriceps of patients with COPD. Thorax, 67(1), 26-34.
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and
the 2−ΔΔCT method. Methods, 25(4), 402-408.
McCarthy, J. J., & Esser, K. A. (2007). MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle
hypertrophy. Journal of Applied Physiology, 102(1), 306-313.
Mishima, Y., Abreu-Goodger, C., Staton, A. A., Stahlhut, C., Shou, C., Cheng, C., … & Giraldez, A. J. (2009). Zebrafish
miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization. Genes & Development,
23(5), 619-632.
Nielsen, S., Scheele, C., Yfanti, C., Akerstrom, T., Nielsen, A. R., Pedersen, B. K., & Laye, M. (2010). Muscle specific
microRNAs are regulated by endurance exercise in human skeletal muscle. The Journal of Physiology, 588(20),
4029-4037.
Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research,
29(9), e45.
Russell, A. P., Lamon, S., Boon, H., Wada, S., Guller, I., Brown, E. L., ... & Wadley, G. D. (2013). Regulation of miRNAs
in human skeletal muscle following acute endurance exercise and short-term endurance training. The Journal of
Physiology, 591(18), 4637-4653.
Safdar, A., Abadi, A., Akhtar, M., Hettinga, B. P., & Tarnopolsky, M. A. (2009). miRNA in the Regulation of Skeletal Muscle
Adaptation to Acute Endurance Exercise in C57Bl / 6J Male Mice. PLOS ONE,4(5), e5610.
Schiaffino, S., & Mammucari, C. (2011). Regulation of skeletal muscle growth by the IGF1-Akt / PKB pathway: insights
from genetic models. Skeletal Muscle, 1(1), 4.
Soci, U. P. R., Fernandes, T., Hashimoto, N. Y., Mota, G. F., Amadeu, M. A., Rosa, K. T., … & Oliveira, E. M.
(2011). MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in
rats. American Journal of Physiology-Heart and Circulatory Physiology, 43(11), 665-673.
Sun, C. Y., She, X. M., Qin, Y., Chu, Z. B., Chen, L., Ai, L. S., … & Hu, Y. (2013). miR-15a and miR-16 affect the
angiogenesis of multiple myeloma by targeting VEGF. Carcinogenesis, 34(2), 426-435.
Sun, L., Shen, W., Liu, Z., Guan, S., Liu, J., & Ding, S. (2010). Endurance exercise causes mitochondrial and oxidative
stress in rat liver: effects of a combination of mitochondrial targeting nutrients. Life Sciences, 86(1-2), 39-44.
Sweetman, D., Goljanek, K., Rathjen, T., Oustanina, S., Braun, T., Dalmay, T., & Munsterberg, A. (2008). Specific
requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133. Developmental
Biology, 321(2), 491-499.
Talmadge, R. J. (2000). Myosin heavy chain isoform expression following reduced neuromuscular activity: potential
regulatory mechanisms. Muscle & Nerve, 23(5), 661-679.
Thum, T., Bauersachs, J. (2009). MicroRNAs in cardiac hypertrophy and failure. Drug Discovery Today: Disease
Mechanisms, 5(3-4), e279-e283.
van Rooij, Eva, Liu, Ning, Olson, Eric N. (2008). MicroRNAs flex their muscles. Trends in Genetics, 24(4), 159-166.
Williams, A. H., Liu, N., van Rooij, E., & Olson, E. N. (2009). MicroRNA control of muscle development and disease.
Current Opinion in Cell Biology, 21(3), 461-469.
Wu, M., Falasca, M., Blough, E. R. (2011). Akt / protein kinase B in skeletal muscle physiology and pathology.
The Journal of Cellular Physiology, 226(1), 29-36.
Yin, H., Pasut, A., Soleimani, V. D., Bentzinger, C. F., Antoun, G., Thorn, S., Rudnicki, M. A. ( 2013).
MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell
Metabolism, 17(2), 210-224.
Yuan, J. S., Reed, A., Chen, F., Stewart, C. N., Jr. (2006). Statistical analysis of real-time PCR data. Bioinformatics, 7, 85.