Asada, S., Daitoku, H., Matsuzaki, H., Saito, T., Sudo, T., Mukai, H., … & Fukamizu, A. (2007). Mitogen-activated protein
kinases, Erk and p38, phosphorylate and regulate Foxo1. Cellular Signalling, 19(3), 519-527.
Boulton, T. G., Nye, S. H., Robbins, D. J., Ip, N. Y., Radzlejewska, E., Morgenbesser, S. D., … & Yancopoulos, G. D.
(1991). ERKs: a family of protein-serine / threonine kinases that are activated and tyrosine phosphorylated in response
to insulin and NGF. Cell, 65(4), 663-675.
Casar, B., Pinto, A., & Crespo, P. (2009). ERK dimers and scaffold proteins: unexpected partners for a forgotten
(cytoplasmic) task. Cell Cycle, 8(7), 1007-1013.
Cheng, P., Alberts, I., & Li, X. (2013). The role of ERK1 / 2 in the regulation of proliferation and differentiation of
astrocytes in developing brain. International Journal of Developmental Neuroscience, 31(8), 783-789.
Cheung, K., Hume, P. A., & Maxwell, L. (2003). Delayed onset muscle soreness. Sports Medicine, 33(2), 145-164.
Coogan, A. N., & Piggins, H. D. (2003). Circadian and photic regulation of phosphorylation of ERK1 / 2 and Elk-1 in the
suprachiasmatic nuclei of the Syrian hamster. Journal of Neuroscience, 23(7), 3085-3093.
Creer, A., Gallagher, P., Slivka, D., Jemiolo, B., Fink, W., & Trappe, S. (2005). Influence of muscle glycogen availability
on ERK1 / 2 and Akt signaling after resistance exercise in human skeletal muscle. Journal of Applied Physiology, 99(3),
950-956.
Deane, C. S., Atherton, P. J., Szewczyk, N. J., Etheridge, T. E., & Phillips, B. E. (2015). The impact of eccentric and concentric exercise on muscle function in young and older men. In Proceeding of the Physiological Society 34, PC210. UK, Cardiff, May 20-23, 2015.
Jiang, W., Zhu, J., Zhuang, X., Zhang, X., Luo, T., Esser, K. A., & Ren, H. (2015). Lipin1 regulates skeletal muscle
differentiation through extracellular signal-regulated kinase (ERK) ativation and cyclin D complex-regulated cell cycle
withdrawal. Journal of Biological Chemistry, 290(39), 23646-23655.
Karlsson, H. K., Nilsson, P. A., Nilsson, J., Chibalin, A. V., Zierath, J. R., & Blomstrand, E. ( 2004).
Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise.
American Journal of Physiology-Endocrinology and Metabolism, 287(1), 1-7.
Kim, Y. B., Inoue, T., Nakajima, R., Nakae, K., Tamura, T., Tokuyama, K., & Suzuki, M. (1995). Effects of endurance
training of gene expression on insulin signal transduction pathway. Biochemical and Biophysical Research Communications, 210(3), 766-773.
Ma, Q. L., Harris-White, M. E., Ubeda, O. J., Simmons, M., Beech, W., Lim, G. P., … & Cole, G. M. (2007). Evidence of Aβ
and transgene-dependent defects in ERK-CREB signaling in Alzheimer’s models. Journal of Neurochemistry, 103(4),
1594-1607.
MacIntosh, B. R., Esau, S. P., Holash, R. J., & Fletcher, J. R. (2011). Procedures for rat in situ skeletal muscle contractile
properties. Journal of Visualized Experiments: JoVE, (56), 3167.
Martineau, L. C., & Gardiner, P. F. (2001). Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension. Journal of Applied Physiology, 91(2), 693-702.
Melo-Lima, S., Lopes, M. C., & Mollinedo, F. (2015). ERK1 / 2 acts as a switch between necrotic and apoptotic cell death
in ether phospholipid edelfosine-treated glioblastoma cells. Pharmacological Research, 95, 2-11.
Miyake, M., Goodison, S., Lawton, A., Gomes-Giacoia, E., & Rosser, C. J. (2015). Angiogenin promotes tumoral growth
and angiogenesis by regulating matrix metallopeptidase-2 expression via the ERK1 / 2 pathway. Oncogene, 34(7), 890-
901.
Murgia, M., Serrano, A. L., Calabria, E., Pallafacchina, G., Lømo, T., & Schiaffino, S. (2000). Ras is involved in
nerve-activity-dependent regulation of muscle genes. Nature Cell Biology, 2(3), 142-147.
Nader, G. A., & Esser, K. A. (2001). Intracellular signaling specificity in skeletal muscle in response to different modes
of exercise. Journal of Applied Physiology, 90(5), 1936-1942.
Nelson, D. L., Lehninger, A. L., & Cox, M. M. (2012). Lehninger principles of biochemistry. 2th Edition. Macmillan Learning.
Nemati, J., Norshahi, M., Rajabi, H., & Ghrakhanlo, R. (2010). The effects of eight weeks of resistance training on fast
and slow twitch muscle protein content integrin in Wistar rat. Olympics, 1(61), 35–45. [Persian]
Ouwens, D. M., de Ruiter, N. D., van der Zon, G. C., Carter, A. P., Schouten, J., van der Burgt, C., … & van Dam, H.
(2002). Growth factors can activate ATF2 via a two-step mechanism: phosphorylation of Thr71 through the Ras–MEK–
ERK pathway and of Thr69 through RalGDS–Src–p38. The EMBO Journal, 21(14), 3782-3793.
Sherwood, D. J., Dufresne, S. D., Markuns, J. F., Cheatham, B., Moller, D. E., Aronson, D., & Goodyear, L. J. (1999).
Differential regulation of MAP kinase, p70S6K, and Akt by contraction and insulin in rat skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism, 276(5), E870-E878.
Steelman, L. S., Chappell, W. H., Abrams, S. L., Kempf, C. R., Long, J., Laidler, P., … & Donia, M. (2011). Roles of the
Raf / MEK / ERK and PI3K / PTEN / Akt / mTOR path ways in controlling growth and sensitivity to therapy-implications for
cancer and aging. Aging (Albany NY), 3(3), 192.
Sung, J. H., Kim, M. O., & Koh, P. O. (2012). Nicotinamide prevents the down-regulation of MEK / ERK / p90RSK signaling
cascade in brain ischemic injury. Journal of Veterinary Medical Science, 74(1), 35-41.
Thompson, H. S., Maynard, E. B., Morales, E. R., & Scordilis, S. P. (2003). Exercise-induced HSP27, HSP70 and MAPK
responses in human skeletal muscle. Acta physiologica Scandinavica, 178(1), 61-72.
Tidball, J. G. (2005). Inflammatory processes in muscle injury and repair. American Journal of Physiology-Regulatory,
Integrative and Comparative Physiology, 288(2), R345-R353.
Widegren, U., Jiang, X. J., Krook, A., Chibalin, A. V., Björnholm, M., Tally, M., … & Zierath, J. R. (1998). Divergent effects of
exercise on metabolic and mitogenic signaling pathways in human skeletal muscle. The FASEB Journal, 12(13),
1379-1389.
Widegren, U., Wretman, C., Lionikas, A., Hedin, G., & Henriksson, J. (2000). Influence of exercise intensity on
ERK / MAP kinase signalling in human skeletal muscle. Pflugers Archiv European Journal of Physiology, 441(2-3), 317-322.
Williamson, D., Gallagher, P., Harber, M., Hollon, C., & Trappe, S. (2003). Mitogen-activated protein kinase (MAPK)
pathway activation: effects of age and acute exercise on human skeletal muscle. The Journal of Physiology, 547
(3), 977-987.
Wortzel, I., Hanoch, T., Porat, Z., Hausser, A., & Seger, R. (2015). Mitotic Golgi translocation of ERK1c is mediated by a
PI4KIIIβ–14-3-3γ shuttling complex. Journal Cell Science, 128(22), 4083-4095.
Wretman, C., Lionikas, A., Widegren, U., Lännergren, J., Westerblad, H., & Henriksson, J. (2001). Effects of concentric
and eccentric contractions on phosphorylation of MAPKerk1 / 2 and MAPKp38 in isolated rat skeletal muscle.
The Journal of physiology, 535(1), 155-164.
Yu, M., Stepto, N. K., Chibalin, A. V., Fryer, L. G., Carling, D., Krook, A., … & Zierath, J. R. (2003). Metabolic and mitogenic
signal transduction in human skeletal muscle after intense cycling exercise. The Journal of Physiology, 546(2), 327-335.
Zhu, J. H., Gusdon, A. M., Cimen, H., Van Houten, B., Koc, E., & Chu, C. T. (2012). Impaired mitochondrial biogenesis
contributes to depletion of functional mitochondria in chronic MPP+ toxicity: dual roles for ERK1 / 2. Cell Death &
Disease, 3(5), e312.